Mister Exam

Derivative of lnsin(2^x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   / x\\
log\sin\2 //
$$\log{\left(\sin{\left(2^{x} \right)} \right)}$$
log(sin(2^x))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
 x    / x\       
2 *cos\2 /*log(2)
-----------------
        / x\     
     sin\2 /     
$$\frac{2^{x} \log{\left(2 \right)} \cos{\left(2^{x} \right)}}{\sin{\left(2^{x} \right)}}$$
The second derivative [src]
           /          / x\    x    2/ x\\
 x    2    |   x   cos\2 /   2 *cos \2 /|
2 *log (2)*|- 2  + ------- - -----------|
           |          / x\        2/ x\ |
           \       sin\2 /     sin \2 / /
$$2^{x} \left(- 2^{x} - \frac{2^{x} \cos^{2}{\left(2^{x} \right)}}{\sin^{2}{\left(2^{x} \right)}} + \frac{\cos{\left(2^{x} \right)}}{\sin{\left(2^{x} \right)}}\right) \log{\left(2 \right)}^{2}$$
The third derivative [src]
           /            / x\      x    2/ x\      2*x    3/ x\      2*x    / x\\
 x    3    |     x   cos\2 /   3*2 *cos \2 /   2*2   *cos \2 /   2*2   *cos\2 /|
2 *log (2)*|- 3*2  + ------- - ------------- + --------------- + --------------|
           |            / x\         2/ x\            3/ x\            / x\    |
           \         sin\2 /      sin \2 /         sin \2 /         sin\2 /    /
$$2^{x} \left(\frac{2 \cdot 2^{2 x} \cos{\left(2^{x} \right)}}{\sin{\left(2^{x} \right)}} + \frac{2 \cdot 2^{2 x} \cos^{3}{\left(2^{x} \right)}}{\sin^{3}{\left(2^{x} \right)}} - 3 \cdot 2^{x} - \frac{3 \cdot 2^{x} \cos^{2}{\left(2^{x} \right)}}{\sin^{2}{\left(2^{x} \right)}} + \frac{\cos{\left(2^{x} \right)}}{\sin{\left(2^{x} \right)}}\right) \log{\left(2 \right)}^{3}$$