Detail solution
-
Let .
-
The derivative of is .
-
Then, apply the chain rule. Multiply by :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
The first derivative
[src]
$$\frac{2 \cos{\left(t \right)}}{\sin{\left(t \right)}}$$
The second derivative
[src]
/ 2 \
| cos (t)|
-2*|1 + -------|
| 2 |
\ sin (t)/
$$- 2 \left(1 + \frac{\cos^{2}{\left(t \right)}}{\sin^{2}{\left(t \right)}}\right)$$
The third derivative
[src]
/ 2 \
| cos (t)|
4*|1 + -------|*cos(t)
| 2 |
\ sin (t)/
----------------------
sin(t)
$$\frac{4 \left(1 + \frac{\cos^{2}{\left(t \right)}}{\sin^{2}{\left(t \right)}}\right) \cos{\left(t \right)}}{\sin{\left(t \right)}}$$