3/ 4 \ log \sin (5*x)/
d / 3/ 4 \\ --\log \sin (5*x)// dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
2/ 4 \ 60*log \sin (5*x)/*cos(5*x) --------------------------- sin(5*x)
/ 2 2 / 4 \\ | / 4 \ 8*cos (5*x) cos (5*x)*log\sin (5*x)/| / 4 \ 300*|- log\sin (5*x)/ + ----------- - ------------------------|*log\sin (5*x)/ | 2 2 | \ sin (5*x) sin (5*x) /
/ 2 2 2/ 4 \ 2 / 4 \\ | 2/ 4 \ / 4 \ 16*cos (5*x) cos (5*x)*log \sin (5*x)/ 12*cos (5*x)*log\sin (5*x)/| 3000*|log \sin (5*x)/ - 12*log\sin (5*x)/ + ------------ + ------------------------- - ---------------------------|*cos(5*x) | 2 2 2 | \ sin (5*x) sin (5*x) sin (5*x) / ---------------------------------------------------------------------------------------------------------------------------- sin(5*x)