Mister Exam

Other calculators


ln(sin(5x)^4)^3

Derivative of ln(sin(5x)^4)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3/   4     \
log \sin (5*x)/
$$\log{\left(\sin^{4}{\left(5 x \right)} \right)}^{3}$$
d /   3/   4     \\
--\log \sin (5*x)//
dx                 
$$\frac{d}{d x} \log{\left(\sin^{4}{\left(5 x \right)} \right)}^{3}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        The result of the chain rule is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
      2/   4     \         
60*log \sin (5*x)/*cos(5*x)
---------------------------
          sin(5*x)         
$$\frac{60 \log{\left(\sin^{4}{\left(5 x \right)} \right)}^{2} \cos{\left(5 x \right)}}{\sin{\left(5 x \right)}}$$
The second derivative [src]
    /                        2           2         /   4     \\               
    |     /   4     \   8*cos (5*x)   cos (5*x)*log\sin (5*x)/|    /   4     \
300*|- log\sin (5*x)/ + ----------- - ------------------------|*log\sin (5*x)/
    |                       2                   2             |               
    \                    sin (5*x)           sin (5*x)        /               
$$300 \left(- \log{\left(\sin^{4}{\left(5 x \right)} \right)} - \frac{\log{\left(\sin^{4}{\left(5 x \right)} \right)} \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}} + \frac{8 \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}}\right) \log{\left(\sin^{4}{\left(5 x \right)} \right)}$$
The third derivative [src]
     /                                            2           2         2/   4     \         2         /   4     \\         
     |   2/   4     \         /   4     \   16*cos (5*x)   cos (5*x)*log \sin (5*x)/   12*cos (5*x)*log\sin (5*x)/|         
3000*|log \sin (5*x)/ - 12*log\sin (5*x)/ + ------------ + ------------------------- - ---------------------------|*cos(5*x)
     |                                          2                     2                            2              |         
     \                                       sin (5*x)             sin (5*x)                    sin (5*x)         /         
----------------------------------------------------------------------------------------------------------------------------
                                                          sin(5*x)                                                          
$$\frac{3000 \left(\log{\left(\sin^{4}{\left(5 x \right)} \right)}^{2} + \frac{\log{\left(\sin^{4}{\left(5 x \right)} \right)}^{2} \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}} - 12 \log{\left(\sin^{4}{\left(5 x \right)} \right)} - \frac{12 \log{\left(\sin^{4}{\left(5 x \right)} \right)} \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}} + \frac{16 \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}}\right) \cos{\left(5 x \right)}}{\sin{\left(5 x \right)}}$$
The graph
Derivative of ln(sin(5x)^4)^3