Mister Exam

Other calculators


ln(sin(5x)^4)^3

Derivative of ln(sin(5x)^4)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3/   4     \
log \sin (5*x)/
log(sin4(5x))3\log{\left(\sin^{4}{\left(5 x \right)} \right)}^{3}
d /   3/   4     \\
--\log \sin (5*x)//
dx                 
ddxlog(sin4(5x))3\frac{d}{d x} \log{\left(\sin^{4}{\left(5 x \right)} \right)}^{3}
Detail solution
  1. Let u=log(sin4(5x))u = \log{\left(\sin^{4}{\left(5 x \right)} \right)}.

  2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

  3. Then, apply the chain rule. Multiply by ddxlog(sin4(5x))\frac{d}{d x} \log{\left(\sin^{4}{\left(5 x \right)} \right)}:

    1. Let u=sin4(5x)u = \sin^{4}{\left(5 x \right)}.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddxsin4(5x)\frac{d}{d x} \sin^{4}{\left(5 x \right)}:

      1. Let u=sin(5x)u = \sin{\left(5 x \right)}.

      2. Apply the power rule: u4u^{4} goes to 4u34 u^{3}

      3. Then, apply the chain rule. Multiply by ddxsin(5x)\frac{d}{d x} \sin{\left(5 x \right)}:

        1. Let u=5xu = 5 x.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 55

          The result of the chain rule is:

          5cos(5x)5 \cos{\left(5 x \right)}

        The result of the chain rule is:

        20sin3(5x)cos(5x)20 \sin^{3}{\left(5 x \right)} \cos{\left(5 x \right)}

      The result of the chain rule is:

      20cos(5x)sin(5x)\frac{20 \cos{\left(5 x \right)}}{\sin{\left(5 x \right)}}

    The result of the chain rule is:

    60log(sin4(5x))2cos(5x)sin(5x)\frac{60 \log{\left(\sin^{4}{\left(5 x \right)} \right)}^{2} \cos{\left(5 x \right)}}{\sin{\left(5 x \right)}}

  4. Now simplify:

    60log(sin4(5x))2tan(5x)\frac{60 \log{\left(\sin^{4}{\left(5 x \right)} \right)}^{2}}{\tan{\left(5 x \right)}}


The answer is:

60log(sin4(5x))2tan(5x)\frac{60 \log{\left(\sin^{4}{\left(5 x \right)} \right)}^{2}}{\tan{\left(5 x \right)}}

The graph
02468-8-6-4-2-1010-500000500000
The first derivative [src]
      2/   4     \         
60*log \sin (5*x)/*cos(5*x)
---------------------------
          sin(5*x)         
60log(sin4(5x))2cos(5x)sin(5x)\frac{60 \log{\left(\sin^{4}{\left(5 x \right)} \right)}^{2} \cos{\left(5 x \right)}}{\sin{\left(5 x \right)}}
The second derivative [src]
    /                        2           2         /   4     \\               
    |     /   4     \   8*cos (5*x)   cos (5*x)*log\sin (5*x)/|    /   4     \
300*|- log\sin (5*x)/ + ----------- - ------------------------|*log\sin (5*x)/
    |                       2                   2             |               
    \                    sin (5*x)           sin (5*x)        /               
300(log(sin4(5x))log(sin4(5x))cos2(5x)sin2(5x)+8cos2(5x)sin2(5x))log(sin4(5x))300 \left(- \log{\left(\sin^{4}{\left(5 x \right)} \right)} - \frac{\log{\left(\sin^{4}{\left(5 x \right)} \right)} \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}} + \frac{8 \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}}\right) \log{\left(\sin^{4}{\left(5 x \right)} \right)}
The third derivative [src]
     /                                            2           2         2/   4     \         2         /   4     \\         
     |   2/   4     \         /   4     \   16*cos (5*x)   cos (5*x)*log \sin (5*x)/   12*cos (5*x)*log\sin (5*x)/|         
3000*|log \sin (5*x)/ - 12*log\sin (5*x)/ + ------------ + ------------------------- - ---------------------------|*cos(5*x)
     |                                          2                     2                            2              |         
     \                                       sin (5*x)             sin (5*x)                    sin (5*x)         /         
----------------------------------------------------------------------------------------------------------------------------
                                                          sin(5*x)                                                          
3000(log(sin4(5x))2+log(sin4(5x))2cos2(5x)sin2(5x)12log(sin4(5x))12log(sin4(5x))cos2(5x)sin2(5x)+16cos2(5x)sin2(5x))cos(5x)sin(5x)\frac{3000 \left(\log{\left(\sin^{4}{\left(5 x \right)} \right)}^{2} + \frac{\log{\left(\sin^{4}{\left(5 x \right)} \right)}^{2} \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}} - 12 \log{\left(\sin^{4}{\left(5 x \right)} \right)} - \frac{12 \log{\left(\sin^{4}{\left(5 x \right)} \right)} \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}} + \frac{16 \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}}\right) \cos{\left(5 x \right)}}{\sin{\left(5 x \right)}}
The graph
Derivative of ln(sin(5x)^4)^3