Mister Exam

Derivative of ln(sin4x)*sin4x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(sin(4*x))*sin(4*x)
$$\log{\left(\sin{\left(4 x \right)} \right)} \sin{\left(4 x \right)}$$
log(sin(4*x))*sin(4*x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
4*cos(4*x) + 4*cos(4*x)*log(sin(4*x))
$$4 \log{\left(\sin{\left(4 x \right)} \right)} \cos{\left(4 x \right)} + 4 \cos{\left(4 x \right)}$$
The second derivative [src]
   /  /       2     \                                          2     \
   |  |    cos (4*x)|                                     2*cos (4*x)|
16*|- |1 + ---------|*sin(4*x) - log(sin(4*x))*sin(4*x) + -----------|
   |  |       2     |                                       sin(4*x) |
   \  \    sin (4*x)/                                                /
$$16 \left(- \left(1 + \frac{\cos^{2}{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}}\right) \sin{\left(4 x \right)} - \log{\left(\sin{\left(4 x \right)} \right)} \sin{\left(4 x \right)} + \frac{2 \cos^{2}{\left(4 x \right)}}{\sin{\left(4 x \right)}}\right)$$
The third derivative [src]
    /       2                     \         
    |    cos (4*x)                |         
-64*|4 + --------- + log(sin(4*x))|*cos(4*x)
    |       2                     |         
    \    sin (4*x)                /         
$$- 64 \left(\log{\left(\sin{\left(4 x \right)} \right)} + 4 + \frac{\cos^{2}{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}}\right) \cos{\left(4 x \right)}$$