Mister Exam

Derivative of ln(sin(3x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(sin(3*x))
log(sin(3x))\log{\left(\sin{\left(3 x \right)} \right)}
log(sin(3*x))
Detail solution
  1. Let u=sin(3x)u = \sin{\left(3 x \right)}.

  2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

  3. Then, apply the chain rule. Multiply by ddxsin(3x)\frac{d}{d x} \sin{\left(3 x \right)}:

    1. Let u=3xu = 3 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 33

      The result of the chain rule is:

      3cos(3x)3 \cos{\left(3 x \right)}

    The result of the chain rule is:

    3cos(3x)sin(3x)\frac{3 \cos{\left(3 x \right)}}{\sin{\left(3 x \right)}}

  4. Now simplify:

    3tan(3x)\frac{3}{\tan{\left(3 x \right)}}


The answer is:

3tan(3x)\frac{3}{\tan{\left(3 x \right)}}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
3*cos(3*x)
----------
 sin(3*x) 
3cos(3x)sin(3x)\frac{3 \cos{\left(3 x \right)}}{\sin{\left(3 x \right)}}
The second derivative [src]
   /       2     \
   |    cos (3*x)|
-9*|1 + ---------|
   |       2     |
   \    sin (3*x)/
9(1+cos2(3x)sin2(3x))- 9 \left(1 + \frac{\cos^{2}{\left(3 x \right)}}{\sin^{2}{\left(3 x \right)}}\right)
The third derivative [src]
   /       2     \         
   |    cos (3*x)|         
54*|1 + ---------|*cos(3*x)
   |       2     |         
   \    sin (3*x)/         
---------------------------
          sin(3*x)         
54(1+cos2(3x)sin2(3x))cos(3x)sin(3x)\frac{54 \left(1 + \frac{\cos^{2}{\left(3 x \right)}}{\sin^{2}{\left(3 x \right)}}\right) \cos{\left(3 x \right)}}{\sin{\left(3 x \right)}}
The graph
Derivative of ln(sin(3x))