Mister Exam

You entered:

ln(sin(2x))x^5x-1

What you mean?

Derivative of ln(sin(2x))x^5x-1

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
               5      
log(sin(2*x))*x *x - 1
$$x x^{5} \log{\left(\sin{\left(2 x \right)} \right)} - 1$$
Detail solution
  1. Differentiate term by term:

    1. Apply the product rule:

      ; to find :

      1. Apply the product rule:

        ; to find :

        1. Let .

        2. The derivative of is .

        3. Then, apply the chain rule. Multiply by :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          The result of the chain rule is:

        ; to find :

        1. Apply the power rule: goes to

        The result is:

      ; to find :

      1. Apply the power rule: goes to

      The result is:

    2. The derivative of the constant is zero.

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  /                        5         \                   
  |   4                 2*x *cos(2*x)|                  5
x*|5*x *log(sin(2*x)) + -------------| + log(sin(2*x))*x 
  \                        sin(2*x)  /                   
$$x^{5} \log{\left(\sin{\left(2 x \right)} \right)} + x \left(\frac{2 x^{5} \cos{\left(2 x \right)}}{\sin{\left(2 x \right)}} + 5 x^{4} \log{\left(\sin{\left(2 x \right)} \right)}\right)$$
The second derivative [src]
     /                               2    2                     \
   4 |     2                      2*x *cos (2*x)   12*x*cos(2*x)|
2*x *|- 2*x  + 15*log(sin(2*x)) - -------------- + -------------|
     |                                 2              sin(2*x)  |
     \                              sin (2*x)                   /
$$2 x^{4} \left(- 2 x^{2} - \frac{2 x^{2} \cos^{2}{\left(2 x \right)}}{\sin^{2}{\left(2 x \right)}} + \frac{12 x \cos{\left(2 x \right)}}{\sin{\left(2 x \right)}} + 15 \log{\left(\sin{\left(2 x \right)} \right)}\right)$$
The third derivative [src]
     /                                 2    2           3    3           3                         \
   3 |      2                      18*x *cos (2*x)   4*x *cos (2*x)   4*x *cos(2*x)   45*x*cos(2*x)|
4*x *|- 18*x  + 30*log(sin(2*x)) - --------------- + -------------- + ------------- + -------------|
     |                                   2                3              sin(2*x)        sin(2*x)  |
     \                                sin (2*x)        sin (2*x)                                   /
$$4 x^{3} \left(\frac{4 x^{3} \cos{\left(2 x \right)}}{\sin{\left(2 x \right)}} + \frac{4 x^{3} \cos^{3}{\left(2 x \right)}}{\sin^{3}{\left(2 x \right)}} - 18 x^{2} - \frac{18 x^{2} \cos^{2}{\left(2 x \right)}}{\sin^{2}{\left(2 x \right)}} + \frac{45 x \cos{\left(2 x \right)}}{\sin{\left(2 x \right)}} + 30 \log{\left(\sin{\left(2 x \right)} \right)}\right)$$
The graph
Derivative of ln(sin(2x))x^5x-1