Mister Exam

Other calculators

Derivative of ln((1+x)/(1-x))-(1/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /1 + x\   1
log|-----| - -
   \1 - x/   x
$$\log{\left(\frac{x + 1}{1 - x} \right)} - \frac{1}{x}$$
log((1 + x)/(1 - x)) - 1/x
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
             /  1      1 + x  \
     (1 - x)*|----- + --------|
             |1 - x          2|
1            \        (1 - x) /
-- + --------------------------
 2             1 + x           
x                              
$$\frac{\left(1 - x\right) \left(\frac{1}{1 - x} + \frac{x + 1}{\left(1 - x\right)^{2}}\right)}{x + 1} + \frac{1}{x^{2}}$$
The second derivative [src]
           1 + x           1 + x    
       1 - ------      1 - ------   
  2        -1 + x          -1 + x   
- -- - ---------- - ----------------
   3           2    (1 + x)*(-1 + x)
  x     (1 + x)                     
$$- \frac{1 - \frac{x + 1}{x - 1}}{\left(x + 1\right)^{2}} - \frac{1 - \frac{x + 1}{x - 1}}{\left(x - 1\right) \left(x + 1\right)} - \frac{2}{x^{3}}$$
The third derivative [src]
  /         1 + x            1 + x               1 + x    \
  |     1 - ------       1 - ------          1 - ------   |
  |3        -1 + x           -1 + x              -1 + x   |
2*|-- + ---------- + ----------------- + -----------------|
  | 4           3                    2          2         |
  \x     (1 + x)     (1 + x)*(-1 + x)    (1 + x) *(-1 + x)/
$$2 \left(\frac{1 - \frac{x + 1}{x - 1}}{\left(x + 1\right)^{3}} + \frac{1 - \frac{x + 1}{x - 1}}{\left(x - 1\right) \left(x + 1\right)^{2}} + \frac{1 - \frac{x + 1}{x - 1}}{\left(x - 1\right)^{2} \left(x + 1\right)} + \frac{3}{x^{4}}\right)$$