Mister Exam

Other calculators


ln√((1+sinx)/(1-sinx))

Derivative of ln√((1+sinx)/(1-sinx))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /    ____________\
   |   / 1 + sin(x) |
log|  /  ---------- |
   \\/   1 - sin(x) /
$$\log{\left(\sqrt{\frac{\sin{\left(x \right)} + 1}{1 - \sin{\left(x \right)}}} \right)}$$
  /   /    ____________\\
d |   |   / 1 + sin(x) ||
--|log|  /  ---------- ||
dx\   \\/   1 - sin(x) //
$$\frac{d}{d x} \log{\left(\sqrt{\frac{\sin{\left(x \right)} + 1}{1 - \sin{\left(x \right)}}} \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of sine is cosine:

          The result is:

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. The derivative of sine is cosine:

            So, the result is:

          The result is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
             /    cos(x)       (1 + sin(x))*cos(x)\
(1 - sin(x))*|-------------- + -------------------|
             |2*(1 - sin(x))                   2  |
             \                   2*(1 - sin(x))   /
---------------------------------------------------
                     1 + sin(x)                    
$$\frac{\left(1 - \sin{\left(x \right)}\right) \left(\frac{\cos{\left(x \right)}}{2 \cdot \left(1 - \sin{\left(x \right)}\right)} + \frac{\left(\sin{\left(x \right)} + 1\right) \cos{\left(x \right)}}{2 \left(1 - \sin{\left(x \right)}\right)^{2}}\right)}{\sin{\left(x \right)} + 1}$$
The second derivative [src]
                                                   2    /     1 + sin(x)\                            2    /     1 + sin(x)\
                2           2                   cos (x)*|1 - -----------|                         cos (x)*|1 - -----------|
  sin(x)     cos (x)     cos (x)*(1 + sin(x))           \    -1 + sin(x)/   (1 + sin(x))*sin(x)           \    -1 + sin(x)/
- ------ - ----------- + -------------------- + ------------------------- + ------------------- - -------------------------
    2      -1 + sin(x)                   2           2*(-1 + sin(x))          2*(-1 + sin(x))           2*(1 + sin(x))     
                            (-1 + sin(x))                                                                                  
---------------------------------------------------------------------------------------------------------------------------
                                                         1 + sin(x)                                                        
$$\frac{- \frac{\left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right) \cos^{2}{\left(x \right)}}{2 \left(\sin{\left(x \right)} + 1\right)} + \frac{\left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right) \cos^{2}{\left(x \right)}}{2 \left(\sin{\left(x \right)} - 1\right)} - \frac{\sin{\left(x \right)}}{2} + \frac{\left(\sin{\left(x \right)} + 1\right) \sin{\left(x \right)}}{2 \left(\sin{\left(x \right)} - 1\right)} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)} - 1} + \frac{\left(\sin{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right)^{2}}}{\sin{\left(x \right)} + 1}$$
The third derivative [src]
/            2                                  2                                                    2                                  2                                                                                                                                                                                                                        \       
|       2*cos (x)    (1 + sin(x))*sin(x)   2*cos (x)*(1 + sin(x))                               2*cos (x)    (1 + sin(x))*sin(x)   2*cos (x)*(1 + sin(x))                                                                                                                                                                                                        |       
|      ----------- - ------------------- - ---------------------- + sin(x)                     ----------- - ------------------- - ---------------------- + sin(x)                                     2    /     1 + sin(x)\   /     1 + sin(x)\                                                           /     1 + sin(x)\             2    /     1 + sin(x)\ |       
|      -1 + sin(x)       -1 + sin(x)                        2                                  -1 + sin(x)       -1 + sin(x)                        2                                     2         cos (x)*|1 - -----------|   |1 - -----------|*sin(x)        2                                           |1 - -----------|*sin(x)   cos (x)*|1 - -----------| |       
|  1                                           (-1 + sin(x))                    1 + sin(x)                                             (-1 + sin(x))                   3*sin(x)      3*cos (x)              \    -1 + sin(x)/   \    -1 + sin(x)/          3*cos (x)*(1 + sin(x))   3*(1 + sin(x))*sin(x)   \    -1 + sin(x)/                  \    -1 + sin(x)/ |       
|- - + ------------------------------------------------------------------- + --------------- - ------------------------------------------------------------------- + ----------- + -------------- + ------------------------- + ------------------------ - ---------------------- - --------------------- - ------------------------ - --------------------------|*cos(x)
|  2                                1 + sin(x)                               2*(-1 + sin(x))                               -1 + sin(x)                               -1 + sin(x)                2                     2              2*(1 + sin(x))                         3                        2          2*(-1 + sin(x))        (1 + sin(x))*(-1 + sin(x))|       
\                                                                                                                                                                                  (-1 + sin(x))          (1 + sin(x))                                         (-1 + sin(x))            (-1 + sin(x))                                                            /       
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                                                                1 + sin(x)                                                                                                                                                                               
$$\frac{\left(\frac{\left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right) \sin{\left(x \right)}}{2 \left(\sin{\left(x \right)} + 1\right)} + \frac{\left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} + 1\right)^{2}} - \frac{\left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right) \sin{\left(x \right)}}{2 \left(\sin{\left(x \right)} - 1\right)} - \frac{\left(1 - \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)} - 1}\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right) \left(\sin{\left(x \right)} + 1\right)} - \frac{1}{2} + \frac{\sin{\left(x \right)} - \frac{\left(\sin{\left(x \right)} + 1\right) \sin{\left(x \right)}}{\sin{\left(x \right)} - 1} + \frac{2 \cos^{2}{\left(x \right)}}{\sin{\left(x \right)} - 1} - \frac{2 \left(\sin{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right)^{2}}}{\sin{\left(x \right)} + 1} + \frac{\sin{\left(x \right)} + 1}{2 \left(\sin{\left(x \right)} - 1\right)} - \frac{\sin{\left(x \right)} - \frac{\left(\sin{\left(x \right)} + 1\right) \sin{\left(x \right)}}{\sin{\left(x \right)} - 1} + \frac{2 \cos^{2}{\left(x \right)}}{\sin{\left(x \right)} - 1} - \frac{2 \left(\sin{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right)^{2}}}{\sin{\left(x \right)} - 1} + \frac{3 \sin{\left(x \right)}}{\sin{\left(x \right)} - 1} - \frac{3 \left(\sin{\left(x \right)} + 1\right) \sin{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right)^{2}} + \frac{3 \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right)^{2}} - \frac{3 \left(\sin{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right)^{3}}\right) \cos{\left(x \right)}}{\sin{\left(x \right)} + 1}$$
The graph
Derivative of ln√((1+sinx)/(1-sinx))