Mister Exam

Other calculators

Derivative of ln((1+2x)/(1-2x))-3/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /1 + 2*x\   3
log|-------| - -
   \1 - 2*x/   x
$$\log{\left(\frac{2 x + 1}{1 - 2 x} \right)} - \frac{3}{x}$$
log((1 + 2*x)/(1 - 2*x)) - 3/x
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
               /   2      2*(1 + 2*x)\
     (1 - 2*x)*|------- + -----------|
               |1 - 2*x             2|
3              \           (1 - 2*x) /
-- + ---------------------------------
 2                1 + 2*x             
x                                     
$$\frac{\left(1 - 2 x\right) \left(\frac{2}{1 - 2 x} + \frac{2 \left(2 x + 1\right)}{\left(1 - 2 x\right)^{2}}\right)}{2 x + 1} + \frac{3}{x^{2}}$$
The second derivative [src]
  /         /    1 + 2*x \       /    1 + 2*x \  \
  |       2*|1 - --------|     2*|1 - --------|  |
  |  3      \    -1 + 2*x/       \    -1 + 2*x/  |
2*|- -- - ---------------- - --------------------|
  |   3               2      (1 + 2*x)*(-1 + 2*x)|
  \  x       (1 + 2*x)                           /
$$2 \left(- \frac{2 \left(1 - \frac{2 x + 1}{2 x - 1}\right)}{\left(2 x + 1\right)^{2}} - \frac{2 \left(1 - \frac{2 x + 1}{2 x - 1}\right)}{\left(2 x - 1\right) \left(2 x + 1\right)} - \frac{3}{x^{3}}\right)$$
The third derivative [src]
  /       /    1 + 2*x \        /    1 + 2*x \          /    1 + 2*x \  \
  |     8*|1 - --------|      8*|1 - --------|        8*|1 - --------|  |
  |9      \    -1 + 2*x/        \    -1 + 2*x/          \    -1 + 2*x/  |
2*|-- + ---------------- + --------------------- + ---------------------|
  | 4               3                          2            2           |
  \x       (1 + 2*x)       (1 + 2*x)*(-1 + 2*x)    (1 + 2*x) *(-1 + 2*x)/
$$2 \left(\frac{8 \left(1 - \frac{2 x + 1}{2 x - 1}\right)}{\left(2 x + 1\right)^{3}} + \frac{8 \left(1 - \frac{2 x + 1}{2 x - 1}\right)}{\left(2 x - 1\right) \left(2 x + 1\right)^{2}} + \frac{8 \left(1 - \frac{2 x + 1}{2 x - 1}\right)}{\left(2 x - 1\right)^{2} \left(2 x + 1\right)} + \frac{9}{x^{4}}\right)$$