/1 - sin(x)\ log|----------| \1 + sin(x)/
log((1 - sin(x))/(1 + sin(x)))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of sine is cosine:
So, the result is:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of sine is cosine:
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
/ cos(x) (1 - sin(x))*cos(x)\ (1 + sin(x))*|- ---------- - -------------------| | 1 + sin(x) 2 | \ (1 + sin(x)) / ------------------------------------------------- 1 - sin(x)
2 / -1 + sin(x)\ 2 / -1 + sin(x)\ 2 cos (x)*|-1 + -----------| cos (x)*|-1 + -----------| 2 2*cos (x) (-1 + sin(x))*sin(x) \ 1 + sin(x)/ \ 1 + sin(x)/ 2*cos (x)*(-1 + sin(x)) -sin(x) - ---------- + -------------------- + -------------------------- - -------------------------- + ----------------------- 1 + sin(x) 1 + sin(x) -1 + sin(x) 1 + sin(x) 2 (1 + sin(x)) ------------------------------------------------------------------------------------------------------------------------------- -1 + sin(x)
/ / 2 2 \ / 2 2 \ \ | | 2*cos (x) (-1 + sin(x))*sin(x) 2*cos (x)*(-1 + sin(x))| | 2*cos (x) (-1 + sin(x))*sin(x) 2*cos (x)*(-1 + sin(x))| | | 2*|-sin(x) - ---------- + -------------------- + -----------------------| 2*|-sin(x) - ---------- + -------------------- + -----------------------| / -1 + sin(x)\ / -1 + sin(x)\ 2 / -1 + sin(x)\ 2 / -1 + sin(x)\| | | 1 + sin(x) 1 + sin(x) 2 | | 1 + sin(x) 1 + sin(x) 2 | 2 |-1 + -----------|*sin(x) |-1 + -----------|*sin(x) 2 2*cos (x)*|-1 + -----------| 2*cos (x)*|-1 + -----------|| | -1 + sin(x) \ (1 + sin(x)) / \ (1 + sin(x)) / 6*sin(x) 6*cos (x) \ 1 + sin(x)/ \ 1 + sin(x)/ 6*cos (x)*(-1 + sin(x)) 6*(-1 + sin(x))*sin(x) \ 1 + sin(x)/ \ 1 + sin(x)/| |-1 + ----------- - ------------------------------------------------------------------------- + ------------------------------------------------------------------------- + ---------- + ------------- + ------------------------- - ------------------------- - ----------------------- - ---------------------- - ---------------------------- + ----------------------------|*cos(x) | 1 + sin(x) -1 + sin(x) 1 + sin(x) 1 + sin(x) 2 1 + sin(x) -1 + sin(x) 3 2 2 (1 + sin(x))*(-1 + sin(x)) | \ (1 + sin(x)) (1 + sin(x)) (1 + sin(x)) (-1 + sin(x)) / --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -1 + sin(x)