log(-3*x + 2)
-------------
3
x - 5*x
log(-3*x + 2)/(x^3 - 5*x)
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
To find :
Differentiate term by term:
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
/ 2\
3 \5 - 3*x /*log(-3*x + 2)
- --------------------- + ------------------------
/ 3 \ 2
\x - 5*x/*(-3*x + 2) / 3 \
\x - 5*x/
/ / 2\ \
| | / 2\ | |
| | \-5 + 3*x / | |
| 2*|3 - ------------|*log(2 - 3*x) |
| | 2 / 2\| / 2\ |
| 9 \ x *\-5 + x // 6*\-5 + 3*x / |
-|----------- + --------------------------------- + ----------------------|
| 2 2 / 2\ |
\(-2 + 3*x) -5 + x x*\-5 + x /*(-2 + 3*x)/
----------------------------------------------------------------------------
/ 2\
x*\-5 + x /
/ / 3\ \
| / 2\ | / 2\ / 2\ | |
| | / 2\ | | 6*\-5 + 3*x / \-5 + 3*x / | |
| | \-5 + 3*x / | 2*|1 - ------------- + -------------|*log(2 - 3*x) |
| 6*|3 - ------------| | 2 2| |
| | 2 / 2\| | -5 + x 2 / 2\ | / 2\ |
| 18 \ x *\-5 + x // \ x *\-5 + x / / 9*\-5 + 3*x / |
3*|----------- - -------------------- - -------------------------------------------------- + -----------------------|
| 3 / 2\ / 2\ / 2\ 2|
\(-2 + 3*x) \-5 + x /*(-2 + 3*x) x*\-5 + x / x*\-5 + x /*(-2 + 3*x) /
---------------------------------------------------------------------------------------------------------------------
/ 2\
x*\-5 + x /