Mister Exam

Other calculators

Derivative of (ln(-3x+2))/((x^3)-5x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(-3*x + 2)
-------------
    3        
   x  - 5*x  
$$\frac{\log{\left(2 - 3 x \right)}}{x^{3} - 5 x}$$
log(-3*x + 2)/(x^3 - 5*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    To find :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                          /       2\              
            3             \5 - 3*x /*log(-3*x + 2)
- --------------------- + ------------------------
  / 3      \                              2       
  \x  - 5*x/*(-3*x + 2)         / 3      \        
                                \x  - 5*x/        
$$\frac{\left(5 - 3 x^{2}\right) \log{\left(2 - 3 x \right)}}{\left(x^{3} - 5 x\right)^{2}} - \frac{3}{\left(2 - 3 x\right) \left(x^{3} - 5 x\right)}$$
The second derivative [src]
 /                /               2\                                      \ 
 |                |    /        2\ |                                      | 
 |                |    \-5 + 3*x / |                                      | 
 |              2*|3 - ------------|*log(2 - 3*x)                         | 
 |                |     2 /      2\|                      /        2\     | 
 |     9          \    x *\-5 + x //                    6*\-5 + 3*x /     | 
-|----------- + --------------------------------- + ----------------------| 
 |          2                      2                  /      2\           | 
 \(-2 + 3*x)                 -5 + x                 x*\-5 + x /*(-2 + 3*x)/ 
----------------------------------------------------------------------------
                                  /      2\                                 
                                x*\-5 + x /                                 
$$- \frac{\frac{2 \left(3 - \frac{\left(3 x^{2} - 5\right)^{2}}{x^{2} \left(x^{2} - 5\right)}\right) \log{\left(2 - 3 x \right)}}{x^{2} - 5} + \frac{9}{\left(3 x - 2\right)^{2}} + \frac{6 \left(3 x^{2} - 5\right)}{x \left(3 x - 2\right) \left(x^{2} - 5\right)}}{x \left(x^{2} - 5\right)}$$
The third derivative [src]
  /                                       /                                3\                                       \
  |                /               2\     |      /        2\    /        2\ |                                       |
  |                |    /        2\ |     |    6*\-5 + 3*x /    \-5 + 3*x / |                                       |
  |                |    \-5 + 3*x / |   2*|1 - ------------- + -------------|*log(2 - 3*x)                          |
  |              6*|3 - ------------|     |             2                  2|                                       |
  |                |     2 /      2\|     |       -5 + x        2 /      2\ |                       /        2\     |
  |     18         \    x *\-5 + x //     \                    x *\-5 + x / /                     9*\-5 + 3*x /     |
3*|----------- - -------------------- - -------------------------------------------------- + -----------------------|
  |          3   /      2\                                   /      2\                         /      2\           2|
  \(-2 + 3*x)    \-5 + x /*(-2 + 3*x)                      x*\-5 + x /                       x*\-5 + x /*(-2 + 3*x) /
---------------------------------------------------------------------------------------------------------------------
                                                       /      2\                                                     
                                                     x*\-5 + x /                                                     
$$\frac{3 \left(- \frac{6 \left(3 - \frac{\left(3 x^{2} - 5\right)^{2}}{x^{2} \left(x^{2} - 5\right)}\right)}{\left(3 x - 2\right) \left(x^{2} - 5\right)} + \frac{18}{\left(3 x - 2\right)^{3}} - \frac{2 \left(1 - \frac{6 \left(3 x^{2} - 5\right)}{x^{2} - 5} + \frac{\left(3 x^{2} - 5\right)^{3}}{x^{2} \left(x^{2} - 5\right)^{2}}\right) \log{\left(2 - 3 x \right)}}{x \left(x^{2} - 5\right)} + \frac{9 \left(3 x^{2} - 5\right)}{x \left(3 x - 2\right)^{2} \left(x^{2} - 5\right)}\right)}{x \left(x^{2} - 5\right)}$$