Mister Exam

Other calculators

Derivative of ln(ln(ln(x^2)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   /   / 2\\\
log\log\log\x ///
$$\log{\left(\log{\left(\log{\left(x^{2} \right)} \right)} \right)}$$
log(log(log(x^2)))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      The result of the chain rule is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
          2           
----------------------
     / 2\    /   / 2\\
x*log\x /*log\log\x //
$$\frac{2}{x \log{\left(x^{2} \right)} \log{\left(\log{\left(x^{2} \right)} \right)}}$$
The second derivative [src]
   /       2               2          \
-2*|1 + ------- + --------------------|
   |       / 2\      / 2\    /   / 2\\|
   \    log\x /   log\x /*log\log\x ///
---------------------------------------
         2    / 2\    /   / 2\\        
        x *log\x /*log\log\x //        
$$- \frac{2 \left(1 + \frac{2}{\log{\left(x^{2} \right)}} + \frac{2}{\log{\left(x^{2} \right)} \log{\left(\log{\left(x^{2} \right)} \right)}}\right)}{x^{2} \log{\left(x^{2} \right)} \log{\left(\log{\left(x^{2} \right)} \right)}}$$
The third derivative [src]
  /       3         4                3                       4                        6          \
4*|1 + ------- + -------- + -------------------- + ---------------------- + ---------------------|
  |       / 2\      2/ 2\      / 2\    /   / 2\\      2/ 2\    2/   / 2\\      2/ 2\    /   / 2\\|
  \    log\x /   log \x /   log\x /*log\log\x //   log \x /*log \log\x //   log \x /*log\log\x ///
--------------------------------------------------------------------------------------------------
                                      3    / 2\    /   / 2\\                                      
                                     x *log\x /*log\log\x //                                      
$$\frac{4 \left(1 + \frac{3}{\log{\left(x^{2} \right)}} + \frac{3}{\log{\left(x^{2} \right)} \log{\left(\log{\left(x^{2} \right)} \right)}} + \frac{4}{\log{\left(x^{2} \right)}^{2}} + \frac{6}{\log{\left(x^{2} \right)}^{2} \log{\left(\log{\left(x^{2} \right)} \right)}} + \frac{4}{\log{\left(x^{2} \right)}^{2} \log{\left(\log{\left(x^{2} \right)} \right)}^{2}}\right)}{x^{3} \log{\left(x^{2} \right)} \log{\left(\log{\left(x^{2} \right)} \right)}}$$