Mister Exam

Other calculators


ln(coth(x/2))

Derivative of ln(coth(x/2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /    /x\\
log|coth|-||
   \    \2//
$$\log{\left(\coth{\left(\frac{x}{2} \right)} \right)}$$
d /   /    /x\\\
--|log|coth|-|||
dx\   \    \2///
$$\frac{d}{d x} \log{\left(\coth{\left(\frac{x}{2} \right)} \right)}$$
The graph
The first derivative [src]
       -1         
------------------
      /x\     2/x\
2*coth|-|*sinh |-|
      \2/      \2/
$$- \frac{1}{2 \sinh^{2}{\left(\frac{x}{2} \right)} \coth{\left(\frac{x}{2} \right)}}$$
The second derivative [src]
      /x\          1       
2*cosh|-| - ---------------
      \2/       /x\     /x\
            coth|-|*sinh|-|
                \2/     \2/
---------------------------
           /x\     3/x\    
     4*coth|-|*sinh |-|    
           \2/      \2/    
$$\frac{2 \cosh{\left(\frac{x}{2} \right)} - \frac{1}{\sinh{\left(\frac{x}{2} \right)} \coth{\left(\frac{x}{2} \right)}}}{4 \sinh^{3}{\left(\frac{x}{2} \right)} \coth{\left(\frac{x}{2} \right)}}$$
The third derivative [src]
                              2/x\            /x\    
                        3*cosh |-|      3*cosh|-|    
            1                  \2/            \2/    
1 - ----------------- - ---------- + ----------------
        2/x\     4/x\        2/x\        /x\     3/x\
    coth |-|*sinh |-|    sinh |-|    coth|-|*sinh |-|
         \2/      \2/         \2/        \2/      \2/
-----------------------------------------------------
                        /x\     2/x\                 
                  4*coth|-|*sinh |-|                 
                        \2/      \2/                 
$$\frac{1 - \frac{3 \cosh^{2}{\left(\frac{x}{2} \right)}}{\sinh^{2}{\left(\frac{x}{2} \right)}} + \frac{3 \cosh{\left(\frac{x}{2} \right)}}{\sinh^{3}{\left(\frac{x}{2} \right)} \coth{\left(\frac{x}{2} \right)}} - \frac{1}{\sinh^{4}{\left(\frac{x}{2} \right)} \coth^{2}{\left(\frac{x}{2} \right)}}}{4 \sinh^{2}{\left(\frac{x}{2} \right)} \coth{\left(\frac{x}{2} \right)}}$$
The graph
Derivative of ln(coth(x/2))