The first derivative
[src]
-1
------------------
/x\ 2/x\
2*coth|-|*sinh |-|
\2/ \2/
$$- \frac{1}{2 \sinh^{2}{\left(\frac{x}{2} \right)} \coth{\left(\frac{x}{2} \right)}}$$
The second derivative
[src]
/x\ 1
2*cosh|-| - ---------------
\2/ /x\ /x\
coth|-|*sinh|-|
\2/ \2/
---------------------------
/x\ 3/x\
4*coth|-|*sinh |-|
\2/ \2/
$$\frac{2 \cosh{\left(\frac{x}{2} \right)} - \frac{1}{\sinh{\left(\frac{x}{2} \right)} \coth{\left(\frac{x}{2} \right)}}}{4 \sinh^{3}{\left(\frac{x}{2} \right)} \coth{\left(\frac{x}{2} \right)}}$$
The third derivative
[src]
2/x\ /x\
3*cosh |-| 3*cosh|-|
1 \2/ \2/
1 - ----------------- - ---------- + ----------------
2/x\ 4/x\ 2/x\ /x\ 3/x\
coth |-|*sinh |-| sinh |-| coth|-|*sinh |-|
\2/ \2/ \2/ \2/ \2/
-----------------------------------------------------
/x\ 2/x\
4*coth|-|*sinh |-|
\2/ \2/
$$\frac{1 - \frac{3 \cosh^{2}{\left(\frac{x}{2} \right)}}{\sinh^{2}{\left(\frac{x}{2} \right)}} + \frac{3 \cosh{\left(\frac{x}{2} \right)}}{\sinh^{3}{\left(\frac{x}{2} \right)} \coth{\left(\frac{x}{2} \right)}} - \frac{1}{\sinh^{4}{\left(\frac{x}{2} \right)} \coth^{2}{\left(\frac{x}{2} \right)}}}{4 \sinh^{2}{\left(\frac{x}{2} \right)} \coth{\left(\frac{x}{2} \right)}}$$