Mister Exam

Other calculators


ln(cos(x^2))

Derivative of ln(cos(x^2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   / 2\\
log\cos\x //
$$\log{\left(\cos{\left(x^{2} \right)} \right)}$$
d /   /   / 2\\\
--\log\cos\x ///
dx              
$$\frac{d}{d x} \log{\left(\cos{\left(x^{2} \right)} \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the power rule: goes to

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        / 2\
-2*x*sin\x /
------------
     / 2\   
  cos\x /   
$$- \frac{2 x \sin{\left(x^{2} \right)}}{\cos{\left(x^{2} \right)}}$$
The second derivative [src]
   /          / 2\      2    2/ 2\\
   |   2   sin\x /   2*x *sin \x /|
-2*|2*x  + ------- + -------------|
   |          / 2\         2/ 2\  |
   \       cos\x /      cos \x /  /
$$- 2 \cdot \left(\frac{2 x^{2} \sin^{2}{\left(x^{2} \right)}}{\cos^{2}{\left(x^{2} \right)}} + 2 x^{2} + \frac{\sin{\left(x^{2} \right)}}{\cos{\left(x^{2} \right)}}\right)$$
The third derivative [src]
     /         2/ 2\      2    / 2\      2    3/ 2\\
     |    3*sin \x /   4*x *sin\x /   4*x *sin \x /|
-4*x*|3 + ---------- + ------------ + -------------|
     |        2/ 2\         / 2\            3/ 2\  |
     \     cos \x /      cos\x /         cos \x /  /
$$- 4 x \left(\frac{4 x^{2} \sin^{3}{\left(x^{2} \right)}}{\cos^{3}{\left(x^{2} \right)}} + \frac{4 x^{2} \sin{\left(x^{2} \right)}}{\cos{\left(x^{2} \right)}} + \frac{3 \sin^{2}{\left(x^{2} \right)}}{\cos^{2}{\left(x^{2} \right)}} + 3\right)$$
The graph
Derivative of ln(cos(x^2))