Mister Exam

Other calculators

Derivative of lncos((x-1)/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   /x - 1\\
log|cos|-----||
   \   \  x  //
$$\log{\left(\cos{\left(\frac{x - 1}{x} \right)} \right)}$$
log(cos((x - 1)/x))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        To find :

        1. Apply the power rule: goes to

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
 /1   x - 1\    /x - 1\ 
-|- - -----|*sin|-----| 
 |x      2 |    \  x  / 
 \      x  /            
------------------------
          /x - 1\       
       cos|-----|       
          \  x  /       
$$- \frac{\left(\frac{1}{x} - \frac{x - 1}{x^{2}}\right) \sin{\left(\frac{x - 1}{x} \right)}}{\cos{\left(\frac{x - 1}{x} \right)}}$$
The second derivative [src]
             /                   /-1 + x\      2/-1 + x\ /    -1 + x\\
             |              2*sin|------|   sin |------|*|1 - ------||
/    -1 + x\ |     -1 + x        \  x   /       \  x   / \      x   /|
|1 - ------|*|-1 + ------ + ------------- - -------------------------|
\      x   / |       x          /-1 + x\              2/-1 + x\      |
             |               cos|------|           cos |------|      |
             \                  \  x   /               \  x   /      /
----------------------------------------------------------------------
                                   2                                  
                                  x                                   
$$\frac{\left(1 - \frac{x - 1}{x}\right) \left(- \frac{\left(1 - \frac{x - 1}{x}\right) \sin^{2}{\left(\frac{x - 1}{x} \right)}}{\cos^{2}{\left(\frac{x - 1}{x} \right)}} + \frac{2 \sin{\left(\frac{x - 1}{x} \right)}}{\cos{\left(\frac{x - 1}{x} \right)}} - 1 + \frac{x - 1}{x}\right)}{x^{2}}$$
The third derivative [src]
               /                                             2                           2                                           \
               |                      /-1 + x\   /    -1 + x\     /-1 + x\   /    -1 + x\     3/-1 + x\        2/-1 + x\ /    -1 + x\|
               |                 3*sin|------|   |1 - ------| *sin|------|   |1 - ------| *sin |------|   3*sin |------|*|1 - ------||
  /    -1 + x\ |    3*(-1 + x)        \  x   /   \      x   /     \  x   /   \      x   /      \  x   /         \  x   / \      x   /|
2*|1 - ------|*|3 - ---------- - ------------- - ------------------------- - -------------------------- + ---------------------------|
  \      x   / |        x            /-1 + x\              /-1 + x\                    3/-1 + x\                     2/-1 + x\       |
               |                  cos|------|           cos|------|                 cos |------|                  cos |------|       |
               \                     \  x   /              \  x   /                     \  x   /                      \  x   /       /
--------------------------------------------------------------------------------------------------------------------------------------
                                                                   3                                                                  
                                                                  x                                                                   
$$\frac{2 \left(1 - \frac{x - 1}{x}\right) \left(- \frac{\left(1 - \frac{x - 1}{x}\right)^{2} \sin^{3}{\left(\frac{x - 1}{x} \right)}}{\cos^{3}{\left(\frac{x - 1}{x} \right)}} - \frac{\left(1 - \frac{x - 1}{x}\right)^{2} \sin{\left(\frac{x - 1}{x} \right)}}{\cos{\left(\frac{x - 1}{x} \right)}} + \frac{3 \left(1 - \frac{x - 1}{x}\right) \sin^{2}{\left(\frac{x - 1}{x} \right)}}{\cos^{2}{\left(\frac{x - 1}{x} \right)}} - \frac{3 \sin{\left(\frac{x - 1}{x} \right)}}{\cos{\left(\frac{x - 1}{x} \right)}} + 3 - \frac{3 \left(x - 1\right)}{x}\right)}{x^{3}}$$