/ /x - 1\\ log|cos|-----|| \ \ x //
log(cos((x - 1)/x))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/1 x - 1\ /x - 1\ -|- - -----|*sin|-----| |x 2 | \ x / \ x / ------------------------ /x - 1\ cos|-----| \ x /
/ /-1 + x\ 2/-1 + x\ / -1 + x\\ | 2*sin|------| sin |------|*|1 - ------|| / -1 + x\ | -1 + x \ x / \ x / \ x /| |1 - ------|*|-1 + ------ + ------------- - -------------------------| \ x / | x /-1 + x\ 2/-1 + x\ | | cos|------| cos |------| | \ \ x / \ x / / ---------------------------------------------------------------------- 2 x
/ 2 2 \ | /-1 + x\ / -1 + x\ /-1 + x\ / -1 + x\ 3/-1 + x\ 2/-1 + x\ / -1 + x\| | 3*sin|------| |1 - ------| *sin|------| |1 - ------| *sin |------| 3*sin |------|*|1 - ------|| / -1 + x\ | 3*(-1 + x) \ x / \ x / \ x / \ x / \ x / \ x / \ x /| 2*|1 - ------|*|3 - ---------- - ------------- - ------------------------- - -------------------------- + ---------------------------| \ x / | x /-1 + x\ /-1 + x\ 3/-1 + x\ 2/-1 + x\ | | cos|------| cos|------| cos |------| cos |------| | \ \ x / \ x / \ x / \ x / / -------------------------------------------------------------------------------------------------------------------------------------- 3 x