Mister Exam

Derivative of ln(ch(x)^n)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /    n   \
log\cosh (x)/
$$\log{\left(\cosh^{n}{\left(x \right)} \right)}$$
log(cosh(x)^n)
The first derivative [src]
n*sinh(x)
---------
 cosh(x) 
$$\frac{n \sinh{\left(x \right)}}{\cosh{\left(x \right)}}$$
The second derivative [src]
  /        2   \
  |    sinh (x)|
n*|1 - --------|
  |        2   |
  \    cosh (x)/
$$n \left(- \frac{\sinh^{2}{\left(x \right)}}{\cosh^{2}{\left(x \right)}} + 1\right)$$
The third derivative [src]
    /         2   \        
    |     sinh (x)|        
2*n*|-1 + --------|*sinh(x)
    |         2   |        
    \     cosh (x)/        
---------------------------
          cosh(x)          
$$\frac{2 n \left(\frac{\sinh^{2}{\left(x \right)}}{\cosh^{2}{\left(x \right)}} - 1\right) \sinh{\left(x \right)}}{\cosh{\left(x \right)}}$$