log(5*x - 3) ------------ 4 4*tan (3*x)
log(5*x - 3)/((4*tan(3*x)^4))
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
The result of the chain rule is:
So, the result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
1 5*----------- 4 / 2 \ 4*tan (3*x) \12 + 12*tan (3*x)/*log(5*x - 3) ------------- - -------------------------------- 5*x - 3 5 4*tan (3*x)
/ 2 \ / / 2 \\ 25 30*\1 + tan (3*x)/ / 2 \ | 5*\1 + tan (3*x)/| - ------------- - ------------------- + 9*\1 + tan (3*x)/*|-2 + -----------------|*log(-3 + 5*x) 2 (-3 + 5*x)*tan(3*x) | 2 | 4*(-3 + 5*x) \ tan (3*x) / ------------------------------------------------------------------------------------------------ 4 tan (3*x)
/ / 2 \\ / 2 \ | 5*\1 + tan (3*x)/| / 2\ 135*\1 + tan (3*x)/*|-2 + -----------------| | / 2 \ / 2 \ | / 2 \ | 2 | 125 / 2 \ | 14*\1 + tan (3*x)/ 15*\1 + tan (3*x)/ | 225*\1 + tan (3*x)/ \ tan (3*x) / ---------------------- - 54*\1 + tan (3*x)/*|2 - ------------------ + -------------------|*log(-3 + 5*x) + --------------------- + -------------------------------------------- 3 | 2 4 | 2 2 (-3 + 5*x)*tan(3*x) 2*(-3 + 5*x) *tan(3*x) \ tan (3*x) tan (3*x) / (-3 + 5*x) *tan (3*x) ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 3 tan (3*x)