Mister Exam

Other calculators

Derivative of (ln(5x-3))/(4tg3x^4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(5*x - 3)
------------
     4      
4*tan (3*x) 
$$\frac{\log{\left(5 x - 3 \right)}}{4 \tan^{4}{\left(3 x \right)}}$$
log(5*x - 3)/((4*tan(3*x)^4))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          To find :

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          Now plug in to the quotient rule:

        The result of the chain rule is:

      So, the result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       1                                        
5*-----------                                   
       4        /           2     \             
  4*tan (3*x)   \12 + 12*tan (3*x)/*log(5*x - 3)
------------- - --------------------------------
   5*x - 3                     5                
                          4*tan (3*x)           
$$- \frac{\left(12 \tan^{2}{\left(3 x \right)} + 12\right) \log{\left(5 x - 3 \right)}}{4 \tan^{5}{\left(3 x \right)}} + \frac{5 \frac{1}{4 \tan^{4}{\left(3 x \right)}}}{5 x - 3}$$
The second derivative [src]
                      /       2     \                     /       /       2     \\              
        25         30*\1 + tan (3*x)/     /       2     \ |     5*\1 + tan (3*x)/|              
- ------------- - ------------------- + 9*\1 + tan (3*x)/*|-2 + -----------------|*log(-3 + 5*x)
              2   (-3 + 5*x)*tan(3*x)                     |            2         |              
  4*(-3 + 5*x)                                            \         tan (3*x)    /              
------------------------------------------------------------------------------------------------
                                              4                                                 
                                           tan (3*x)                                            
$$\frac{9 \left(\frac{5 \left(\tan^{2}{\left(3 x \right)} + 1\right)}{\tan^{2}{\left(3 x \right)}} - 2\right) \left(\tan^{2}{\left(3 x \right)} + 1\right) \log{\left(5 x - 3 \right)} - \frac{30 \left(\tan^{2}{\left(3 x \right)} + 1\right)}{\left(5 x - 3\right) \tan{\left(3 x \right)}} - \frac{25}{4 \left(5 x - 3\right)^{2}}}{\tan^{4}{\left(3 x \right)}}$$
The third derivative [src]
                                                                                                                                                       /       /       2     \\
                                                                                                                                       /       2     \ |     5*\1 + tan (3*x)/|
                                            /                                           2\                                         135*\1 + tan (3*x)/*|-2 + -----------------|
                                            |       /       2     \      /       2     \ |                      /       2     \                        |            2         |
         125                /       2     \ |    14*\1 + tan (3*x)/   15*\1 + tan (3*x)/ |                  225*\1 + tan (3*x)/                        \         tan (3*x)    /
---------------------- - 54*\1 + tan (3*x)/*|2 - ------------------ + -------------------|*log(-3 + 5*x) + --------------------- + --------------------------------------------
            3                               |           2                     4          |                           2    2                    (-3 + 5*x)*tan(3*x)             
2*(-3 + 5*x) *tan(3*x)                      \        tan (3*x)             tan (3*x)     /                 (-3 + 5*x) *tan (3*x)                                               
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                      3                                                                                        
                                                                                   tan (3*x)                                                                                   
$$\frac{- 54 \left(\tan^{2}{\left(3 x \right)} + 1\right) \left(\frac{15 \left(\tan^{2}{\left(3 x \right)} + 1\right)^{2}}{\tan^{4}{\left(3 x \right)}} - \frac{14 \left(\tan^{2}{\left(3 x \right)} + 1\right)}{\tan^{2}{\left(3 x \right)}} + 2\right) \log{\left(5 x - 3 \right)} + \frac{135 \left(\frac{5 \left(\tan^{2}{\left(3 x \right)} + 1\right)}{\tan^{2}{\left(3 x \right)}} - 2\right) \left(\tan^{2}{\left(3 x \right)} + 1\right)}{\left(5 x - 3\right) \tan{\left(3 x \right)}} + \frac{225 \left(\tan^{2}{\left(3 x \right)} + 1\right)}{\left(5 x - 3\right)^{2} \tan^{2}{\left(3 x \right)}} + \frac{125}{2 \left(5 x - 3\right)^{3} \tan{\left(3 x \right)}}}{\tan^{3}{\left(3 x \right)}}$$