Mister Exam

Other calculators

Derivative of ln((5x-1)/(3x+2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /5*x - 1\
log|-------|
   \3*x + 2/
$$\log{\left(\frac{5 x - 1}{3 x + 2} \right)}$$
log((5*x - 1)/(3*x + 2))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
          /   5      3*(5*x - 1)\
(3*x + 2)*|------- - -----------|
          |3*x + 2             2|
          \           (3*x + 2) /
---------------------------------
             5*x - 1             
$$\frac{\left(3 x + 2\right) \left(\frac{5}{3 x + 2} - \frac{3 \left(5 x - 1\right)}{\left(3 x + 2\right)^{2}}\right)}{5 x - 1}$$
The second derivative [src]
/    3*(-1 + 5*x)\ /     5          3   \
|5 - ------------|*|- -------- - -------|
\      2 + 3*x   / \  -1 + 5*x   2 + 3*x/
-----------------------------------------
                 -1 + 5*x                
$$\frac{\left(5 - \frac{3 \left(5 x - 1\right)}{3 x + 2}\right) \left(- \frac{5}{5 x - 1} - \frac{3}{3 x + 2}\right)}{5 x - 1}$$
The third derivative [src]
  /    3*(-1 + 5*x)\ /    9             25                15         \
2*|5 - ------------|*|---------- + ----------- + --------------------|
  \      2 + 3*x   / |         2             2   (-1 + 5*x)*(2 + 3*x)|
                     \(2 + 3*x)    (-1 + 5*x)                        /
----------------------------------------------------------------------
                               -1 + 5*x                               
$$\frac{2 \left(5 - \frac{3 \left(5 x - 1\right)}{3 x + 2}\right) \left(\frac{25}{\left(5 x - 1\right)^{2}} + \frac{15}{\left(3 x + 2\right) \left(5 x - 1\right)} + \frac{9}{\left(3 x + 2\right)^{2}}\right)}{5 x - 1}$$