Mister Exam

Other calculators

Derivative of ln(3x)*cos(x^2+5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
            / 2    \
log(3*x)*cos\x  + 5/
$$\log{\left(3 x \right)} \cos{\left(x^{2} + 5 \right)}$$
log(3*x)*cos(x^2 + 5)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   / 2    \                           
cos\x  + 5/                   / 2    \
----------- - 2*x*log(3*x)*sin\x  + 5/
     x                                
$$- 2 x \log{\left(3 x \right)} \sin{\left(x^{2} + 5 \right)} + \frac{\cos{\left(x^{2} + 5 \right)}}{x}$$
The second derivative [src]
 /                   /     2\                                              \
 |     /     2\   cos\5 + x /     /   2    /     2\      /     2\\         |
-|4*sin\5 + x / + ----------- + 2*\2*x *cos\5 + x / + sin\5 + x //*log(3*x)|
 |                      2                                                  |
 \                     x                                                   /
$$- (2 \left(2 x^{2} \cos{\left(x^{2} + 5 \right)} + \sin{\left(x^{2} + 5 \right)}\right) \log{\left(3 x \right)} + 4 \sin{\left(x^{2} + 5 \right)} + \frac{\cos{\left(x^{2} + 5 \right)}}{x^{2}})$$
The third derivative [src]
  /   /     2\     /   2    /     2\      /     2\\        /     2\                                                    \
  |cos\5 + x /   3*\2*x *cos\5 + x / + sin\5 + x //   3*sin\5 + x /       /       /     2\      2    /     2\\         |
2*|----------- - ---------------------------------- + ------------- + 2*x*\- 3*cos\5 + x / + 2*x *sin\5 + x //*log(3*x)|
  |      3                       x                          x                                                          |
  \     x                                                                                                              /
$$2 \left(2 x \left(2 x^{2} \sin{\left(x^{2} + 5 \right)} - 3 \cos{\left(x^{2} + 5 \right)}\right) \log{\left(3 x \right)} - \frac{3 \left(2 x^{2} \cos{\left(x^{2} + 5 \right)} + \sin{\left(x^{2} + 5 \right)}\right)}{x} + \frac{3 \sin{\left(x^{2} + 5 \right)}}{x} + \frac{\cos{\left(x^{2} + 5 \right)}}{x^{3}}\right)$$