/ 2 \ log(3*x)*cos\x + 5/
log(3*x)*cos(x^2 + 5)
Apply the product rule:
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
; to find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
/ 2 \ cos\x + 5/ / 2 \ ----------- - 2*x*log(3*x)*sin\x + 5/ x
/ / 2\ \ | / 2\ cos\5 + x / / 2 / 2\ / 2\\ | -|4*sin\5 + x / + ----------- + 2*\2*x *cos\5 + x / + sin\5 + x //*log(3*x)| | 2 | \ x /
/ / 2\ / 2 / 2\ / 2\\ / 2\ \ |cos\5 + x / 3*\2*x *cos\5 + x / + sin\5 + x // 3*sin\5 + x / / / 2\ 2 / 2\\ | 2*|----------- - ---------------------------------- + ------------- + 2*x*\- 3*cos\5 + x / + 2*x *sin\5 + x //*log(3*x)| | 3 x x | \ x /