Mister Exam

Derivative of ln(3x-2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(3*x - 2*x)
$$\log{\left(- 2 x + 3 x \right)}$$
log(3*x - 2*x)
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    1    
---------
3*x - 2*x
$$\frac{1}{- 2 x + 3 x}$$
The second derivative [src]
-1 
---
  2
 x 
$$- \frac{1}{x^{2}}$$
The third derivative [src]
2 
--
 3
x 
$$\frac{2}{x^{3}}$$