/ 3*x \ log|------| | 2 | \x - 1/
log((3*x)/(x^2 - 1))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
/ 2 \
/ 2 \ | 3 6*x |
\x - 1/*|------ - ---------|
| 2 2|
|x - 1 / 2 \ |
\ \x - 1/ /
-----------------------------
3*x
2 / 2 \
2*x | 4*x |
-1 + ------- 2*|-3 + -------|
2 2 | 2|
2 -1 + x 4*x \ -1 + x /
------- + ------------ - ---------- + ----------------
2 2 2 2
-1 + x x / 2\ -1 + x
\-1 + x /
/ / 2 4 \ \ | 2 2 | 8*x 8*x | / 2 \| | 2*x 2*x 3*|1 - ------- + ----------| | 4*x || | -1 + ------- -1 + ------- | 2 2| 2*|-3 + -------|| | 2 3 2 | -1 + x / 2\ | | 2|| | -1 + x 12*x 16*x -1 + x \ \-1 + x / / \ -1 + x /| 2*|- ------------ - ---------- + ---------- + ------------ - ---------------------------- - ----------------| | 3 2 3 / 2\ / 2\ / 2\ | | x / 2\ / 2\ x*\-1 + x / x*\-1 + x / x*\-1 + x / | \ \-1 + x / \-1 + x / /