Mister Exam

Other calculators

Derivative of ln((3x)/(x^2-1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 3*x  \
log|------|
   | 2    |
   \x  - 1/
$$\log{\left(\frac{3 x}{x^{2} - 1} \right)}$$
log((3*x)/(x^2 - 1))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
         /               2  \
/ 2    \ |  3         6*x   |
\x  - 1/*|------ - ---------|
         | 2               2|
         |x  - 1   / 2    \ |
         \         \x  - 1/ /
-----------------------------
             3*x             
$$\frac{\left(x^{2} - 1\right) \left(- \frac{6 x^{2}}{\left(x^{2} - 1\right)^{2}} + \frac{3}{x^{2} - 1}\right)}{3 x}$$
The second derivative [src]
                    2                   /          2 \
                 2*x                    |       4*x  |
          -1 + -------                2*|-3 + -------|
                     2         2        |           2|
   2           -1 + x       4*x         \     -1 + x /
------- + ------------ - ---------- + ----------------
      2         2                 2             2     
-1 + x         x         /      2\        -1 + x      
                         \-1 + x /                    
$$- \frac{4 x^{2}}{\left(x^{2} - 1\right)^{2}} + \frac{2 \left(\frac{4 x^{2}}{x^{2} - 1} - 3\right)}{x^{2} - 1} + \frac{2}{x^{2} - 1} + \frac{\frac{2 x^{2}}{x^{2} - 1} - 1}{x^{2}}$$
The third derivative [src]
  /                                                            /         2          4   \                   \
  |            2                                        2      |      8*x        8*x    |     /          2 \|
  |         2*x                                      2*x     3*|1 - ------- + ----------|     |       4*x  ||
  |  -1 + -------                             -1 + -------     |          2            2|   2*|-3 + -------||
  |             2                      3                 2     |    -1 + x    /      2\ |     |           2||
  |       -1 + x       12*x        16*x            -1 + x      \              \-1 + x / /     \     -1 + x /|
2*|- ------------ - ---------- + ---------- + ------------ - ---------------------------- - ----------------|
  |        3                 2            3     /      2\              /      2\                /      2\   |
  |       x         /      2\    /      2\    x*\-1 + x /            x*\-1 + x /              x*\-1 + x /   |
  \                 \-1 + x /    \-1 + x /                                                                  /
$$2 \left(\frac{16 x^{3}}{\left(x^{2} - 1\right)^{3}} - \frac{12 x}{\left(x^{2} - 1\right)^{2}} + \frac{\frac{2 x^{2}}{x^{2} - 1} - 1}{x \left(x^{2} - 1\right)} - \frac{2 \left(\frac{4 x^{2}}{x^{2} - 1} - 3\right)}{x \left(x^{2} - 1\right)} - \frac{3 \left(\frac{8 x^{4}}{\left(x^{2} - 1\right)^{2}} - \frac{8 x^{2}}{x^{2} - 1} + 1\right)}{x \left(x^{2} - 1\right)} - \frac{\frac{2 x^{2}}{x^{2} - 1} - 1}{x^{3}}\right)$$