Mister Exam

Other calculators

Derivative of ln((2x+1)/(x-3))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /2*x + 1\
log|-------|
   \ x - 3 /
log(2x+1x3)\log{\left(\frac{2 x + 1}{x - 3} \right)}
log((2*x + 1)/(x - 3))
Detail solution
  1. Let u=2x+1x3u = \frac{2 x + 1}{x - 3}.

  2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

  3. Then, apply the chain rule. Multiply by ddx2x+1x3\frac{d}{d x} \frac{2 x + 1}{x - 3}:

    1. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=2x+1f{\left(x \right)} = 2 x + 1 and g(x)=x3g{\left(x \right)} = x - 3.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Differentiate 2x+12 x + 1 term by term:

        1. The derivative of the constant 11 is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        The result is: 22

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Differentiate x3x - 3 term by term:

        1. The derivative of the constant 3-3 is zero.

        2. Apply the power rule: xx goes to 11

        The result is: 11

      Now plug in to the quotient rule:

      7(x3)2- \frac{7}{\left(x - 3\right)^{2}}

    The result of the chain rule is:

    7(x3)(x3)2(2x+1)- \frac{7 \left(x - 3\right)}{\left(x - 3\right)^{2} \left(2 x + 1\right)}

  4. Now simplify:

    7(x3)(2x+1)- \frac{7}{\left(x - 3\right) \left(2 x + 1\right)}


The answer is:

7(x3)(2x+1)- \frac{7}{\left(x - 3\right) \left(2 x + 1\right)}

The graph
02468-8-6-4-2-1010-250250
The first derivative [src]
        /  2     2*x + 1 \
(x - 3)*|----- - --------|
        |x - 3          2|
        \        (x - 3) /
--------------------------
         2*x + 1          
(x3)(2x32x+1(x3)2)2x+1\frac{\left(x - 3\right) \left(\frac{2}{x - 3} - \frac{2 x + 1}{\left(x - 3\right)^{2}}\right)}{2 x + 1}
The second derivative [src]
/    1 + 2*x\ /    1         2   \
|2 - -------|*|- ------ - -------|
\     -3 + x/ \  -3 + x   1 + 2*x/
----------------------------------
             1 + 2*x              
(22x+1x3)(22x+11x3)2x+1\frac{\left(2 - \frac{2 x + 1}{x - 3}\right) \left(- \frac{2}{2 x + 1} - \frac{1}{x - 3}\right)}{2 x + 1}
4-я производная [src]
  /    1 + 2*x\ /      1           8                 4                     2         \
6*|2 - -------|*|- --------- - ---------- - ------------------- - -------------------|
  \     -3 + x/ |          3            3            2                              2|
                \  (-3 + x)    (1 + 2*x)    (1 + 2*x) *(-3 + x)   (1 + 2*x)*(-3 + x) /
--------------------------------------------------------------------------------------
                                       1 + 2*x                                        
6(22x+1x3)(8(2x+1)34(x3)(2x+1)22(x3)2(2x+1)1(x3)3)2x+1\frac{6 \left(2 - \frac{2 x + 1}{x - 3}\right) \left(- \frac{8}{\left(2 x + 1\right)^{3}} - \frac{4}{\left(x - 3\right) \left(2 x + 1\right)^{2}} - \frac{2}{\left(x - 3\right)^{2} \left(2 x + 1\right)} - \frac{1}{\left(x - 3\right)^{3}}\right)}{2 x + 1}
The third derivative [src]
  /    1 + 2*x\ /    1           4                2         \
2*|2 - -------|*|--------- + ---------- + ------------------|
  \     -3 + x/ |        2            2   (1 + 2*x)*(-3 + x)|
                \(-3 + x)    (1 + 2*x)                      /
-------------------------------------------------------------
                           1 + 2*x                           
2(22x+1x3)(4(2x+1)2+2(x3)(2x+1)+1(x3)2)2x+1\frac{2 \left(2 - \frac{2 x + 1}{x - 3}\right) \left(\frac{4}{\left(2 x + 1\right)^{2}} + \frac{2}{\left(x - 3\right) \left(2 x + 1\right)} + \frac{1}{\left(x - 3\right)^{2}}\right)}{2 x + 1}