/2*x + 1\ log|-------| \ x - 3 /
log((2*x + 1)/(x - 3))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
/ 2 2*x + 1 \
(x - 3)*|----- - --------|
|x - 3 2|
\ (x - 3) /
--------------------------
2*x + 1
/ 1 + 2*x\ / 1 2 \
|2 - -------|*|- ------ - -------|
\ -3 + x/ \ -3 + x 1 + 2*x/
----------------------------------
1 + 2*x
/ 1 + 2*x\ / 1 8 4 2 \
6*|2 - -------|*|- --------- - ---------- - ------------------- - -------------------|
\ -3 + x/ | 3 3 2 2|
\ (-3 + x) (1 + 2*x) (1 + 2*x) *(-3 + x) (1 + 2*x)*(-3 + x) /
--------------------------------------------------------------------------------------
1 + 2*x
/ 1 + 2*x\ / 1 4 2 \
2*|2 - -------|*|--------- + ---------- + ------------------|
\ -3 + x/ | 2 2 (1 + 2*x)*(-3 + x)|
\(-3 + x) (1 + 2*x) /
-------------------------------------------------------------
1 + 2*x