Mister Exam

Derivative of ln((2x+1)/(x-3))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /2*x + 1\
log|-------|
   \ x - 3 /
$$\log{\left(\frac{2 x + 1}{x - 3} \right)}$$
log((2*x + 1)/(x - 3))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        /  2     2*x + 1 \
(x - 3)*|----- - --------|
        |x - 3          2|
        \        (x - 3) /
--------------------------
         2*x + 1          
$$\frac{\left(x - 3\right) \left(\frac{2}{x - 3} - \frac{2 x + 1}{\left(x - 3\right)^{2}}\right)}{2 x + 1}$$
The second derivative [src]
/    1 + 2*x\ /    1         2   \
|2 - -------|*|- ------ - -------|
\     -3 + x/ \  -3 + x   1 + 2*x/
----------------------------------
             1 + 2*x              
$$\frac{\left(2 - \frac{2 x + 1}{x - 3}\right) \left(- \frac{2}{2 x + 1} - \frac{1}{x - 3}\right)}{2 x + 1}$$
4-я производная [src]
  /    1 + 2*x\ /      1           8                 4                     2         \
6*|2 - -------|*|- --------- - ---------- - ------------------- - -------------------|
  \     -3 + x/ |          3            3            2                              2|
                \  (-3 + x)    (1 + 2*x)    (1 + 2*x) *(-3 + x)   (1 + 2*x)*(-3 + x) /
--------------------------------------------------------------------------------------
                                       1 + 2*x                                        
$$\frac{6 \left(2 - \frac{2 x + 1}{x - 3}\right) \left(- \frac{8}{\left(2 x + 1\right)^{3}} - \frac{4}{\left(x - 3\right) \left(2 x + 1\right)^{2}} - \frac{2}{\left(x - 3\right)^{2} \left(2 x + 1\right)} - \frac{1}{\left(x - 3\right)^{3}}\right)}{2 x + 1}$$
The third derivative [src]
  /    1 + 2*x\ /    1           4                2         \
2*|2 - -------|*|--------- + ---------- + ------------------|
  \     -3 + x/ |        2            2   (1 + 2*x)*(-3 + x)|
                \(-3 + x)    (1 + 2*x)                      /
-------------------------------------------------------------
                           1 + 2*x                           
$$\frac{2 \left(2 - \frac{2 x + 1}{x - 3}\right) \left(\frac{4}{\left(2 x + 1\right)^{2}} + \frac{2}{\left(x - 3\right) \left(2 x + 1\right)} + \frac{1}{\left(x - 3\right)^{2}}\right)}{2 x + 1}$$