Mister Exam

Other calculators

Derivative of lim(2-2x)^tg*x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         tan(x)
(2 - 2*x)      
$$\left(2 - 2 x\right)^{\tan{\left(x \right)}}$$
(2 - 2*x)^tan(x)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
         tan(x) //       2   \                2*tan(x)\
(2 - 2*x)      *|\1 + tan (x)/*log(2 - 2*x) - --------|
                \                             2 - 2*x /
$$\left(2 - 2 x\right)^{\tan{\left(x \right)}} \left(\left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(2 - 2 x \right)} - \frac{2 \tan{\left(x \right)}}{2 - 2 x}\right)$$
The second derivative [src]
                  /                                       2                 /       2   \                                        \
           tan(x) |/tan(x)   /       2   \               \      tan(x)    2*\1 + tan (x)/     /       2   \                      |
(2*(1 - x))      *||------ + \1 + tan (x)/*log(2*(1 - x))|  - --------- + --------------- + 2*\1 + tan (x)/*log(2*(1 - x))*tan(x)|
                  |\-1 + x                               /            2        -1 + x                                            |
                  \                                           (-1 + x)                                                           /
$$\left(2 \left(1 - x\right)\right)^{\tan{\left(x \right)}} \left(\left(\left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(2 \left(1 - x\right) \right)} + \frac{\tan{\left(x \right)}}{x - 1}\right)^{2} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(2 \left(1 - x\right) \right)} \tan{\left(x \right)} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)}{x - 1} - \frac{\tan{\left(x \right)}}{\left(x - 1\right)^{2}}\right)$$
The third derivative [src]
                  /                                       3     /       2   \                  2                                                                        /                /       2   \                                        \                                              /       2   \       \
           tan(x) |/tan(x)   /       2   \               \    3*\1 + tan (x)/     /       2   \                    2*tan(x)     /tan(x)   /       2   \               \ |    tan(x)    2*\1 + tan (x)/     /       2   \                      |        2    /       2   \                  6*\1 + tan (x)/*tan(x)|
(2*(1 - x))      *||------ + \1 + tan (x)/*log(2*(1 - x))|  - --------------- + 2*\1 + tan (x)/ *log(2*(1 - x)) + --------- + 3*|------ + \1 + tan (x)/*log(2*(1 - x))|*|- --------- + --------------- + 2*\1 + tan (x)/*log(2*(1 - x))*tan(x)| + 4*tan (x)*\1 + tan (x)/*log(2*(1 - x)) + ----------------------|
                  |\-1 + x                               /               2                                                3     \-1 + x                               / |          2        -1 + x                                            |                                                    -1 + x        |
                  \                                              (-1 + x)                                         (-1 + x)                                              \  (-1 + x)                                                           /                                                                  /
$$\left(2 \left(1 - x\right)\right)^{\tan{\left(x \right)}} \left(\left(\left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(2 \left(1 - x\right) \right)} + \frac{\tan{\left(x \right)}}{x - 1}\right)^{3} + 3 \left(\left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(2 \left(1 - x\right) \right)} + \frac{\tan{\left(x \right)}}{x - 1}\right) \left(2 \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(2 \left(1 - x\right) \right)} \tan{\left(x \right)} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)}{x - 1} - \frac{\tan{\left(x \right)}}{\left(x - 1\right)^{2}}\right) + 2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \log{\left(2 \left(1 - x\right) \right)} + 4 \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(2 \left(1 - x\right) \right)} \tan^{2}{\left(x \right)} + \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{x - 1} - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)}{\left(x - 1\right)^{2}} + \frac{2 \tan{\left(x \right)}}{\left(x - 1\right)^{3}}\right)$$