tan(x) (2 - 2*x)
(2 - 2*x)^tan(x)
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
tan(x) // 2 \ 2*tan(x)\
(2 - 2*x) *|\1 + tan (x)/*log(2 - 2*x) - --------|
\ 2 - 2*x /
/ 2 / 2 \ \
tan(x) |/tan(x) / 2 \ \ tan(x) 2*\1 + tan (x)/ / 2 \ |
(2*(1 - x)) *||------ + \1 + tan (x)/*log(2*(1 - x))| - --------- + --------------- + 2*\1 + tan (x)/*log(2*(1 - x))*tan(x)|
|\-1 + x / 2 -1 + x |
\ (-1 + x) /
/ 3 / 2 \ 2 / / 2 \ \ / 2 \ \
tan(x) |/tan(x) / 2 \ \ 3*\1 + tan (x)/ / 2 \ 2*tan(x) /tan(x) / 2 \ \ | tan(x) 2*\1 + tan (x)/ / 2 \ | 2 / 2 \ 6*\1 + tan (x)/*tan(x)|
(2*(1 - x)) *||------ + \1 + tan (x)/*log(2*(1 - x))| - --------------- + 2*\1 + tan (x)/ *log(2*(1 - x)) + --------- + 3*|------ + \1 + tan (x)/*log(2*(1 - x))|*|- --------- + --------------- + 2*\1 + tan (x)/*log(2*(1 - x))*tan(x)| + 4*tan (x)*\1 + tan (x)/*log(2*(1 - x)) + ----------------------|
|\-1 + x / 2 3 \-1 + x / | 2 -1 + x | -1 + x |
\ (-1 + x) (-1 + x) \ (-1 + x) / /