Mister Exam

Other calculators


lg(x+2)*(arcsin(3x))^2

Derivative of lg(x+2)*(arcsin(3x))^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
               2     
log(x + 2)*asin (3*x)
$$\log{\left(x + 2 \right)} \operatorname{asin}^{2}{\left(3 x \right)}$$
d /               2     \
--\log(x + 2)*asin (3*x)/
dx                       
$$\frac{d}{d x} \log{\left(x + 2 \right)} \operatorname{asin}^{2}{\left(3 x \right)}$$
The graph
The first derivative [src]
    2                              
asin (3*x)   6*asin(3*x)*log(x + 2)
---------- + ----------------------
  x + 2             __________     
                   /        2      
                 \/  1 - 9*x       
$$\frac{\operatorname{asin}^{2}{\left(3 x \right)}}{x + 2} + \frac{6 \log{\left(x + 2 \right)} \operatorname{asin}{\left(3 x \right)}}{\sqrt{- 9 x^{2} + 1}}$$
The second derivative [src]
      2                                                                           
  asin (3*x)      /      1       3*x*asin(3*x)\                   12*asin(3*x)    
- ---------- + 18*|- --------- + -------------|*log(2 + x) + ---------------------
          2       |          2             3/2|                 __________        
   (2 + x)        |  -1 + 9*x    /       2\   |                /        2         
                  \              \1 - 9*x /   /              \/  1 - 9*x  *(2 + x)
$$18 \cdot \left(\frac{3 x \operatorname{asin}{\left(3 x \right)}}{\left(- 9 x^{2} + 1\right)^{\frac{3}{2}}} - \frac{1}{9 x^{2} - 1}\right) \log{\left(x + 2 \right)} - \frac{\operatorname{asin}^{2}{\left(3 x \right)}}{\left(x + 2\right)^{2}} + \frac{12 \operatorname{asin}{\left(3 x \right)}}{\sqrt{- 9 x^{2} + 1} \left(x + 2\right)}$$
The third derivative [src]
  /                /      1       3*x*asin(3*x)\                                                                                          \
  |             27*|- --------- + -------------|                                                                                          |
  |                |          2             3/2|                                                                                          |
  |    2           |  -1 + 9*x    /       2\   |      /                                   2          \                                    |
  |asin (3*x)      \              \1 - 9*x /   /      |  asin(3*x)         9*x        27*x *asin(3*x)|                   9*asin(3*x)      |
2*|---------- + -------------------------------- + 27*|------------- + ------------ + ---------------|*log(2 + x) - ----------------------|
  |        3                 2 + x                    |          3/2              2              5/2 |                 __________         |
  | (2 + x)                                           |/       2\      /        2\     /       2\    |                /        2         2|
  \                                                   \\1 - 9*x /      \-1 + 9*x /     \1 - 9*x /    /              \/  1 - 9*x  *(2 + x) /
$$2 \cdot \left(27 \cdot \left(\frac{9 x}{\left(9 x^{2} - 1\right)^{2}} + \frac{27 x^{2} \operatorname{asin}{\left(3 x \right)}}{\left(- 9 x^{2} + 1\right)^{\frac{5}{2}}} + \frac{\operatorname{asin}{\left(3 x \right)}}{\left(- 9 x^{2} + 1\right)^{\frac{3}{2}}}\right) \log{\left(x + 2 \right)} + \frac{27 \cdot \left(\frac{3 x \operatorname{asin}{\left(3 x \right)}}{\left(- 9 x^{2} + 1\right)^{\frac{3}{2}}} - \frac{1}{9 x^{2} - 1}\right)}{x + 2} + \frac{\operatorname{asin}^{2}{\left(3 x \right)}}{\left(x + 2\right)^{3}} - \frac{9 \operatorname{asin}{\left(3 x \right)}}{\sqrt{- 9 x^{2} + 1} \left(x + 2\right)^{2}}\right)$$
The graph
Derivative of lg(x+2)*(arcsin(3x))^2