Mister Exam

Derivative of tanh(3r-x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tanh(3*r - x)
$$\tanh{\left(3 r - x \right)}$$
tanh(3*r - x)
The first derivative [src]
         2         
-1 + tanh (3*r - x)
$$\tanh^{2}{\left(3 r - x \right)} - 1$$
The second derivative [src]
  /         2          \               
2*\-1 + tanh (-x + 3*r)/*tanh(-x + 3*r)
$$2 \left(\tanh^{2}{\left(3 r - x \right)} - 1\right) \tanh{\left(3 r - x \right)}$$
The third derivative [src]
  /         2          \ /           2          \
2*\-1 + tanh (-x + 3*r)/*\-1 + 3*tanh (-x + 3*r)/
$$2 \left(\tanh^{2}{\left(3 r - x \right)} - 1\right) \left(3 \tanh^{2}{\left(3 r - x \right)} - 1\right)$$