Mister Exam

Derivative of 4^cos(5x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 cos(5*x)
4        
$$4^{\cos{\left(5 x \right)}}$$
4^cos(5*x)
Detail solution
  1. Let .

  2. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result of the chain rule is:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
    cos(5*x)                
-5*4        *log(4)*sin(5*x)
$$- 5 \cdot 4^{\cos{\left(5 x \right)}} \log{\left(4 \right)} \sin{\left(5 x \right)}$$
The second derivative [src]
    cos(5*x) /               2            \       
25*4        *\-cos(5*x) + sin (5*x)*log(4)/*log(4)
$$25 \cdot 4^{\cos{\left(5 x \right)}} \left(\log{\left(4 \right)} \sin^{2}{\left(5 x \right)} - \cos{\left(5 x \right)}\right) \log{\left(4 \right)}$$
The third derivative [src]
     cos(5*x) /       2       2                         \                
125*4        *\1 - log (4)*sin (5*x) + 3*cos(5*x)*log(4)/*log(4)*sin(5*x)
$$125 \cdot 4^{\cos{\left(5 x \right)}} \left(- \log{\left(4 \right)}^{2} \sin^{2}{\left(5 x \right)} + 3 \log{\left(4 \right)} \cos{\left(5 x \right)} + 1\right) \log{\left(4 \right)} \sin{\left(5 x \right)}$$