Mister Exam

Other calculators

Derivative of 4*sin^2(pit/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     2/pi*t\
4*sin |----|
      \ 2  /
$$4 \sin^{2}{\left(\frac{\pi t}{2} \right)}$$
4*sin((pi*t)/2)^2
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        /pi*t\    /pi*t\
4*pi*cos|----|*sin|----|
        \ 2  /    \ 2  /
$$4 \pi \sin{\left(\frac{\pi t}{2} \right)} \cos{\left(\frac{\pi t}{2} \right)}$$
The second derivative [src]
     2 /   2/pi*t\      2/pi*t\\
-2*pi *|sin |----| - cos |----||
       \    \ 2  /       \ 2  //
$$- 2 \pi^{2} \left(\sin^{2}{\left(\frac{\pi t}{2} \right)} - \cos^{2}{\left(\frac{\pi t}{2} \right)}\right)$$
The third derivative [src]
     3    /pi*t\    /pi*t\
-4*pi *cos|----|*sin|----|
          \ 2  /    \ 2  /
$$- 4 \pi^{3} \sin{\left(\frac{\pi t}{2} \right)} \cos{\left(\frac{\pi t}{2} \right)}$$