Mister Exam

Other calculators

Derivative of (4*sin(6*x))^(5*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
            5*x
(4*sin(6*x))   
$$\left(4 \sin{\left(6 x \right)}\right)^{5 x}$$
(4*sin(6*x))^(5*x)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
            5*x /                    30*x*cos(6*x)\
(4*sin(6*x))   *|5*log(4*sin(6*x)) + -------------|
                \                       sin(6*x)  /
$$\left(4 \sin{\left(6 x \right)}\right)^{5 x} \left(\frac{30 x \cos{\left(6 x \right)}}{\sin{\left(6 x \right)}} + 5 \log{\left(4 \sin{\left(6 x \right)} \right)}\right)$$
The second derivative [src]
                  /                                          2                         2     \
              5*x |          /6*x*cos(6*x)                  \    12*cos(6*x)   36*x*cos (6*x)|
5*(4*sin(6*x))   *|-36*x + 5*|------------ + log(4*sin(6*x))|  + ----------- - --------------|
                  |          \  sin(6*x)                    /      sin(6*x)         2        |
                  \                                                              sin (6*x)   /
$$5 \left(4 \sin{\left(6 x \right)}\right)^{5 x} \left(- 36 x - \frac{36 x \cos^{2}{\left(6 x \right)}}{\sin^{2}{\left(6 x \right)}} + 5 \left(\frac{6 x \cos{\left(6 x \right)}}{\sin{\left(6 x \right)}} + \log{\left(4 \sin{\left(6 x \right)} \right)}\right)^{2} + \frac{12 \cos{\left(6 x \right)}}{\sin{\left(6 x \right)}}\right)$$
The third derivative [src]
                  /                                          3                                        /                        2     \          2                 3                      \
              5*x |          /6*x*cos(6*x)                  \        /6*x*cos(6*x)                  \ |      cos(6*x)   3*x*cos (6*x)|   108*cos (6*x)   432*x*cos (6*x)   432*x*cos(6*x)|
5*(4*sin(6*x))   *|-108 + 25*|------------ + log(4*sin(6*x))|  - 180*|------------ + log(4*sin(6*x))|*|3*x - -------- + -------------| - ------------- + --------------- + --------------|
                  |          \  sin(6*x)                    /        \  sin(6*x)                    / |      sin(6*x)        2       |        2                3              sin(6*x)   |
                  \                                                                                   \                   sin (6*x)  /     sin (6*x)        sin (6*x)                    /
$$5 \left(4 \sin{\left(6 x \right)}\right)^{5 x} \left(\frac{432 x \cos{\left(6 x \right)}}{\sin{\left(6 x \right)}} + \frac{432 x \cos^{3}{\left(6 x \right)}}{\sin^{3}{\left(6 x \right)}} + 25 \left(\frac{6 x \cos{\left(6 x \right)}}{\sin{\left(6 x \right)}} + \log{\left(4 \sin{\left(6 x \right)} \right)}\right)^{3} - 180 \left(\frac{6 x \cos{\left(6 x \right)}}{\sin{\left(6 x \right)}} + \log{\left(4 \sin{\left(6 x \right)} \right)}\right) \left(3 x + \frac{3 x \cos^{2}{\left(6 x \right)}}{\sin^{2}{\left(6 x \right)}} - \frac{\cos{\left(6 x \right)}}{\sin{\left(6 x \right)}}\right) - 108 - \frac{108 \cos^{2}{\left(6 x \right)}}{\sin^{2}{\left(6 x \right)}}\right)$$