Mister Exam

Other calculators

Derivative of 4*cos(2*x)-5

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
4*cos(2*x) - 5
4cos(2x)54 \cos{\left(2 x \right)} - 5
4*cos(2*x) - 5
Detail solution
  1. Differentiate 4cos(2x)54 \cos{\left(2 x \right)} - 5 term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=2xu = 2 x.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2sin(2x)- 2 \sin{\left(2 x \right)}

      So, the result is: 8sin(2x)- 8 \sin{\left(2 x \right)}

    2. The derivative of the constant 5-5 is zero.

    The result is: 8sin(2x)- 8 \sin{\left(2 x \right)}


The answer is:

8sin(2x)- 8 \sin{\left(2 x \right)}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
-8*sin(2*x)
8sin(2x)- 8 \sin{\left(2 x \right)}
The second derivative [src]
-16*cos(2*x)
16cos(2x)- 16 \cos{\left(2 x \right)}
The third derivative [src]
32*sin(2*x)
32sin(2x)32 \sin{\left(2 x \right)}