Mister Exam

Other calculators


4/sqrt(4x+1)

Derivative of 4/sqrt(4x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     4     
-----------
  _________
\/ 4*x + 1 
44x+1\frac{4}{\sqrt{4 x + 1}}
4/sqrt(4*x + 1)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=4x+1u = \sqrt{4 x + 1}.

    2. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

    3. Then, apply the chain rule. Multiply by ddx4x+1\frac{d}{d x} \sqrt{4 x + 1}:

      1. Let u=4x+1u = 4 x + 1.

      2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

      3. Then, apply the chain rule. Multiply by ddx(4x+1)\frac{d}{d x} \left(4 x + 1\right):

        1. Differentiate 4x+14 x + 1 term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          2. The derivative of the constant 11 is zero.

          The result is: 44

        The result of the chain rule is:

        24x+1\frac{2}{\sqrt{4 x + 1}}

      The result of the chain rule is:

      2(4x+1)32- \frac{2}{\left(4 x + 1\right)^{\frac{3}{2}}}

    So, the result is: 8(4x+1)32- \frac{8}{\left(4 x + 1\right)^{\frac{3}{2}}}

  2. Now simplify:

    8(4x+1)32- \frac{8}{\left(4 x + 1\right)^{\frac{3}{2}}}


The answer is:

8(4x+1)32- \frac{8}{\left(4 x + 1\right)^{\frac{3}{2}}}

The graph
02468-8-6-4-2-1010-2525
The first derivative [src]
    -8      
------------
         3/2
(4*x + 1)   
8(4x+1)32- \frac{8}{\left(4 x + 1\right)^{\frac{3}{2}}}
The second derivative [src]
     48     
------------
         5/2
(1 + 4*x)   
48(4x+1)52\frac{48}{\left(4 x + 1\right)^{\frac{5}{2}}}
The third derivative [src]
   -480     
------------
         7/2
(1 + 4*x)   
480(4x+1)72- \frac{480}{\left(4 x + 1\right)^{\frac{7}{2}}}
The graph
Derivative of 4/sqrt(4x+1)