Mister Exam

Other calculators


(5-6*x)*exp(8*x)

Derivative of (5-6*x)*exp(8*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
           8*x
(5 - 6*x)*e   
(56x)e8x\left(5 - 6 x\right) e^{8 x}
d /           8*x\
--\(5 - 6*x)*e   /
dx                
ddx(56x)e8x\frac{d}{d x} \left(5 - 6 x\right) e^{8 x}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=56xf{\left(x \right)} = 5 - 6 x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 56x5 - 6 x term by term:

      1. The derivative of the constant 55 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 66

        So, the result is: 6-6

      The result is: 6-6

    g(x)=e8xg{\left(x \right)} = e^{8 x}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=8xu = 8 x.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddx8x\frac{d}{d x} 8 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 88

      The result of the chain rule is:

      8e8x8 e^{8 x}

    The result is: 8(56x)e8x6e8x8 \cdot \left(5 - 6 x\right) e^{8 x} - 6 e^{8 x}

  2. Now simplify:

    (3448x)e8x\left(34 - 48 x\right) e^{8 x}


The answer is:

(3448x)e8x\left(34 - 48 x\right) e^{8 x}

The graph
02468-8-6-4-2-1010-5e373e37
The first derivative [src]
     8*x                8*x
- 6*e    + 8*(5 - 6*x)*e   
8(56x)e8x6e8x8 \cdot \left(5 - 6 x\right) e^{8 x} - 6 e^{8 x}
The second derivative [src]
                 8*x
-32*(-7 + 12*x)*e   
32(12x7)e8x- 32 \cdot \left(12 x - 7\right) e^{8 x}
The third derivative [src]
                   8*x
-128*(-11 + 24*x)*e   
128(24x11)e8x- 128 \cdot \left(24 x - 11\right) e^{8 x}
The graph
Derivative of (5-6*x)*exp(8*x)