Mister Exam

Other calculators

Derivative of 5/(sqrt(2)*sqrt(x)+3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       5       
---------------
  ___   ___    
\/ 2 *\/ x  + 3
$$\frac{5}{\sqrt{2} \sqrt{x} + 3}$$
5/(sqrt(2)*sqrt(x) + 3)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
              ___         
         -5*\/ 2          
--------------------------
                         2
    ___ /  ___   ___    \ 
2*\/ x *\\/ 2 *\/ x  + 3/ 
$$- \frac{5 \sqrt{2}}{2 \sqrt{x} \left(\sqrt{2} \sqrt{x} + 3\right)^{2}}$$
The second derivative [src]
  /                        ___ \
  |         1            \/ 2  |
5*|------------------- + ------|
  |  /      ___   ___\      3/2|
  \x*\3 + \/ 2 *\/ x /   4*x   /
--------------------------------
                        2       
       /      ___   ___\        
       \3 + \/ 2 *\/ x /        
$$\frac{5 \left(\frac{1}{x \left(\sqrt{2} \sqrt{x} + 3\right)} + \frac{\sqrt{2}}{4 x^{\frac{3}{2}}}\right)}{\left(\sqrt{2} \sqrt{x} + 3\right)^{2}}$$
The third derivative [src]
    /  ___                                      ___        \
    |\/ 2             4                     4*\/ 2         |
-15*|----- + -------------------- + -----------------------|
    |  5/2    2 /      ___   ___\                         2|
    | x      x *\3 + \/ 2 *\/ x /    3/2 /      ___   ___\ |
    \                               x   *\3 + \/ 2 *\/ x / /
------------------------------------------------------------
                                       2                    
                      /      ___   ___\                     
                    8*\3 + \/ 2 *\/ x /                     
$$- \frac{15 \left(\frac{4}{x^{2} \left(\sqrt{2} \sqrt{x} + 3\right)} + \frac{4 \sqrt{2}}{x^{\frac{3}{2}} \left(\sqrt{2} \sqrt{x} + 3\right)^{2}} + \frac{\sqrt{2}}{x^{\frac{5}{2}}}\right)}{8 \left(\sqrt{2} \sqrt{x} + 3\right)^{2}}$$