Mister Exam

Other calculators

Derivative of 5arcsinsqrt(2x^4-5)+7

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /   __________\    
      |  /    4     |    
5*asin\\/  2*x  - 5 / + 7
$$5 \operatorname{asin}{\left(\sqrt{2 x^{4} - 5} \right)} + 7$$
5*asin(sqrt(2*x^4 - 5)) + 7
The graph
The first derivative [src]
               3           
           20*x            
---------------------------
   __________    __________
  /        4    /    4     
\/  6 - 2*x  *\/  2*x  - 5 
$$\frac{20 x^{3}}{\sqrt{6 - 2 x^{4}} \sqrt{2 x^{4} - 5}}$$
The second derivative [src]
            /          4         4 \
     ___  2 |       4*x       2*x  |
10*\/ 2 *x *|3 - --------- + ------|
            |            4        4|
            \    -5 + 2*x    3 - x /
------------------------------------
        ___________    ________     
       /         4    /      4      
     \/  -5 + 2*x  *\/  3 - x       
$$\frac{10 \sqrt{2} x^{2} \left(- \frac{4 x^{4}}{2 x^{4} - 5} + \frac{2 x^{4}}{3 - x^{4}} + 3\right)}{\sqrt{3 - x^{4}} \sqrt{2 x^{4} - 5}}$$
The third derivative [src]
           /          4           8         4           8                  8        \
       ___ |      18*x         6*x       9*x        24*x                8*x         |
20*x*\/ 2 *|3 - --------- + --------- + ------ + ------------ - --------------------|
           |            4           2        4              2   /        4\ /     4\|
           |    -5 + 2*x    /     4\    3 - x    /        4\    \-5 + 2*x /*\3 - x /|
           \                \3 - x /             \-5 + 2*x /                        /
-------------------------------------------------------------------------------------
                                 ___________    ________                             
                                /         4    /      4                              
                              \/  -5 + 2*x  *\/  3 - x                               
$$\frac{20 \sqrt{2} x \left(\frac{24 x^{8}}{\left(2 x^{4} - 5\right)^{2}} - \frac{8 x^{8}}{\left(3 - x^{4}\right) \left(2 x^{4} - 5\right)} + \frac{6 x^{8}}{\left(3 - x^{4}\right)^{2}} - \frac{18 x^{4}}{2 x^{4} - 5} + \frac{9 x^{4}}{3 - x^{4}} + 3\right)}{\sqrt{3 - x^{4}} \sqrt{2 x^{4} - 5}}$$