Detail solution
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
Let .
-
The derivative of sine is cosine:
-
Then, apply the chain rule. Multiply by :
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
The derivative of cosine is negative sine:
The result is:
The result of the chain rule is:
The result of the chain rule is:
So, the result is:
The answer is:
The first derivative
[src]
2
150*sin (y*cos(y))*(-y*sin(y) + cos(y))*cos(y*cos(y))
$$150 \left(- y \sin{\left(y \right)} + \cos{\left(y \right)}\right) \sin^{2}{\left(y \cos{\left(y \right)} \right)} \cos{\left(y \cos{\left(y \right)} \right)}$$
The second derivative
[src]
/ 2 2 2 2 \
-150*\(-cos(y) + y*sin(y)) *sin (y*cos(y)) - 2*(-cos(y) + y*sin(y)) *cos (y*cos(y)) + (2*sin(y) + y*cos(y))*cos(y*cos(y))*sin(y*cos(y))/*sin(y*cos(y))
$$- 150 \left(\left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right)^{2} \sin^{2}{\left(y \cos{\left(y \right)} \right)} - 2 \left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right)^{2} \cos^{2}{\left(y \cos{\left(y \right)} \right)} + \left(y \cos{\left(y \right)} + 2 \sin{\left(y \right)}\right) \sin{\left(y \cos{\left(y \right)} \right)} \cos{\left(y \cos{\left(y \right)} \right)}\right) \sin{\left(y \cos{\left(y \right)} \right)}$$
The third derivative
[src]
/ 3 3 2 3 3 2 2 \
150*\- 2*(-cos(y) + y*sin(y)) *cos (y*cos(y)) + sin (y*cos(y))*(-3*cos(y) + y*sin(y))*cos(y*cos(y)) - 3*sin (y*cos(y))*(-cos(y) + y*sin(y))*(2*sin(y) + y*cos(y)) + 7*(-cos(y) + y*sin(y)) *sin (y*cos(y))*cos(y*cos(y)) + 6*cos (y*cos(y))*(-cos(y) + y*sin(y))*(2*sin(y) + y*cos(y))*sin(y*cos(y))/
$$150 \left(\left(y \sin{\left(y \right)} - 3 \cos{\left(y \right)}\right) \sin^{2}{\left(y \cos{\left(y \right)} \right)} \cos{\left(y \cos{\left(y \right)} \right)} + 7 \left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right)^{3} \sin^{2}{\left(y \cos{\left(y \right)} \right)} \cos{\left(y \cos{\left(y \right)} \right)} - 2 \left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right)^{3} \cos^{3}{\left(y \cos{\left(y \right)} \right)} - 3 \left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right) \left(y \cos{\left(y \right)} + 2 \sin{\left(y \right)}\right) \sin^{3}{\left(y \cos{\left(y \right)} \right)} + 6 \left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right) \left(y \cos{\left(y \right)} + 2 \sin{\left(y \right)}\right) \sin{\left(y \cos{\left(y \right)} \right)} \cos^{2}{\left(y \cos{\left(y \right)} \right)}\right)$$