Mister Exam

Other calculators

Derivative of 50*sin(y*cos(y))^(3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      3          
50*sin (y*cos(y))
50sin3(ycos(y))50 \sin^{3}{\left(y \cos{\left(y \right)} \right)}
50*sin(y*cos(y))^3
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=sin(ycos(y))u = \sin{\left(y \cos{\left(y \right)} \right)}.

    2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

    3. Then, apply the chain rule. Multiply by ddysin(ycos(y))\frac{d}{d y} \sin{\left(y \cos{\left(y \right)} \right)}:

      1. Let u=ycos(y)u = y \cos{\left(y \right)}.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddyycos(y)\frac{d}{d y} y \cos{\left(y \right)}:

        1. Apply the product rule:

          ddyf(y)g(y)=f(y)ddyg(y)+g(y)ddyf(y)\frac{d}{d y} f{\left(y \right)} g{\left(y \right)} = f{\left(y \right)} \frac{d}{d y} g{\left(y \right)} + g{\left(y \right)} \frac{d}{d y} f{\left(y \right)}

          f(y)=yf{\left(y \right)} = y; to find ddyf(y)\frac{d}{d y} f{\left(y \right)}:

          1. Apply the power rule: yy goes to 11

          g(y)=cos(y)g{\left(y \right)} = \cos{\left(y \right)}; to find ddyg(y)\frac{d}{d y} g{\left(y \right)}:

          1. The derivative of cosine is negative sine:

            ddycos(y)=sin(y)\frac{d}{d y} \cos{\left(y \right)} = - \sin{\left(y \right)}

          The result is: ysin(y)+cos(y)- y \sin{\left(y \right)} + \cos{\left(y \right)}

        The result of the chain rule is:

        (ysin(y)+cos(y))cos(ycos(y))\left(- y \sin{\left(y \right)} + \cos{\left(y \right)}\right) \cos{\left(y \cos{\left(y \right)} \right)}

      The result of the chain rule is:

      3(ysin(y)+cos(y))sin2(ycos(y))cos(ycos(y))3 \left(- y \sin{\left(y \right)} + \cos{\left(y \right)}\right) \sin^{2}{\left(y \cos{\left(y \right)} \right)} \cos{\left(y \cos{\left(y \right)} \right)}

    So, the result is: 150(ysin(y)+cos(y))sin2(ycos(y))cos(ycos(y))150 \left(- y \sin{\left(y \right)} + \cos{\left(y \right)}\right) \sin^{2}{\left(y \cos{\left(y \right)} \right)} \cos{\left(y \cos{\left(y \right)} \right)}


The answer is:

150(ysin(y)+cos(y))sin2(ycos(y))cos(ycos(y))150 \left(- y \sin{\left(y \right)} + \cos{\left(y \right)}\right) \sin^{2}{\left(y \cos{\left(y \right)} \right)} \cos{\left(y \cos{\left(y \right)} \right)}

The graph
02468-8-6-4-2-1010-10001000
The first derivative [src]
       2                                             
150*sin (y*cos(y))*(-y*sin(y) + cos(y))*cos(y*cos(y))
150(ysin(y)+cos(y))sin2(ycos(y))cos(ycos(y))150 \left(- y \sin{\left(y \right)} + \cos{\left(y \right)}\right) \sin^{2}{\left(y \cos{\left(y \right)} \right)} \cos{\left(y \cos{\left(y \right)} \right)}
The second derivative [src]
     /                    2    2                                   2    2                                                              \              
-150*\(-cos(y) + y*sin(y)) *sin (y*cos(y)) - 2*(-cos(y) + y*sin(y)) *cos (y*cos(y)) + (2*sin(y) + y*cos(y))*cos(y*cos(y))*sin(y*cos(y))/*sin(y*cos(y))
150((ysin(y)cos(y))2sin2(ycos(y))2(ysin(y)cos(y))2cos2(ycos(y))+(ycos(y)+2sin(y))sin(ycos(y))cos(ycos(y)))sin(ycos(y))- 150 \left(\left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right)^{2} \sin^{2}{\left(y \cos{\left(y \right)} \right)} - 2 \left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right)^{2} \cos^{2}{\left(y \cos{\left(y \right)} \right)} + \left(y \cos{\left(y \right)} + 2 \sin{\left(y \right)}\right) \sin{\left(y \cos{\left(y \right)} \right)} \cos{\left(y \cos{\left(y \right)} \right)}\right) \sin{\left(y \cos{\left(y \right)} \right)}
The third derivative [src]
    /                        3    3                2                                                       3                                                                              3    2                                2                                                                   \
150*\- 2*(-cos(y) + y*sin(y)) *cos (y*cos(y)) + sin (y*cos(y))*(-3*cos(y) + y*sin(y))*cos(y*cos(y)) - 3*sin (y*cos(y))*(-cos(y) + y*sin(y))*(2*sin(y) + y*cos(y)) + 7*(-cos(y) + y*sin(y)) *sin (y*cos(y))*cos(y*cos(y)) + 6*cos (y*cos(y))*(-cos(y) + y*sin(y))*(2*sin(y) + y*cos(y))*sin(y*cos(y))/
150((ysin(y)3cos(y))sin2(ycos(y))cos(ycos(y))+7(ysin(y)cos(y))3sin2(ycos(y))cos(ycos(y))2(ysin(y)cos(y))3cos3(ycos(y))3(ysin(y)cos(y))(ycos(y)+2sin(y))sin3(ycos(y))+6(ysin(y)cos(y))(ycos(y)+2sin(y))sin(ycos(y))cos2(ycos(y)))150 \left(\left(y \sin{\left(y \right)} - 3 \cos{\left(y \right)}\right) \sin^{2}{\left(y \cos{\left(y \right)} \right)} \cos{\left(y \cos{\left(y \right)} \right)} + 7 \left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right)^{3} \sin^{2}{\left(y \cos{\left(y \right)} \right)} \cos{\left(y \cos{\left(y \right)} \right)} - 2 \left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right)^{3} \cos^{3}{\left(y \cos{\left(y \right)} \right)} - 3 \left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right) \left(y \cos{\left(y \right)} + 2 \sin{\left(y \right)}\right) \sin^{3}{\left(y \cos{\left(y \right)} \right)} + 6 \left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right) \left(y \cos{\left(y \right)} + 2 \sin{\left(y \right)}\right) \sin{\left(y \cos{\left(y \right)} \right)} \cos^{2}{\left(y \cos{\left(y \right)} \right)}\right)