Mister Exam

Other calculators

Derivative of 50*sin(y*cos(y))^(3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      3          
50*sin (y*cos(y))
$$50 \sin^{3}{\left(y \cos{\left(y \right)} \right)}$$
50*sin(y*cos(y))^3
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Apply the product rule:

          ; to find :

          1. Apply the power rule: goes to

          ; to find :

          1. The derivative of cosine is negative sine:

          The result is:

        The result of the chain rule is:

      The result of the chain rule is:

    So, the result is:


The answer is:

The graph
The first derivative [src]
       2                                             
150*sin (y*cos(y))*(-y*sin(y) + cos(y))*cos(y*cos(y))
$$150 \left(- y \sin{\left(y \right)} + \cos{\left(y \right)}\right) \sin^{2}{\left(y \cos{\left(y \right)} \right)} \cos{\left(y \cos{\left(y \right)} \right)}$$
The second derivative [src]
     /                    2    2                                   2    2                                                              \              
-150*\(-cos(y) + y*sin(y)) *sin (y*cos(y)) - 2*(-cos(y) + y*sin(y)) *cos (y*cos(y)) + (2*sin(y) + y*cos(y))*cos(y*cos(y))*sin(y*cos(y))/*sin(y*cos(y))
$$- 150 \left(\left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right)^{2} \sin^{2}{\left(y \cos{\left(y \right)} \right)} - 2 \left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right)^{2} \cos^{2}{\left(y \cos{\left(y \right)} \right)} + \left(y \cos{\left(y \right)} + 2 \sin{\left(y \right)}\right) \sin{\left(y \cos{\left(y \right)} \right)} \cos{\left(y \cos{\left(y \right)} \right)}\right) \sin{\left(y \cos{\left(y \right)} \right)}$$
The third derivative [src]
    /                        3    3                2                                                       3                                                                              3    2                                2                                                                   \
150*\- 2*(-cos(y) + y*sin(y)) *cos (y*cos(y)) + sin (y*cos(y))*(-3*cos(y) + y*sin(y))*cos(y*cos(y)) - 3*sin (y*cos(y))*(-cos(y) + y*sin(y))*(2*sin(y) + y*cos(y)) + 7*(-cos(y) + y*sin(y)) *sin (y*cos(y))*cos(y*cos(y)) + 6*cos (y*cos(y))*(-cos(y) + y*sin(y))*(2*sin(y) + y*cos(y))*sin(y*cos(y))/
$$150 \left(\left(y \sin{\left(y \right)} - 3 \cos{\left(y \right)}\right) \sin^{2}{\left(y \cos{\left(y \right)} \right)} \cos{\left(y \cos{\left(y \right)} \right)} + 7 \left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right)^{3} \sin^{2}{\left(y \cos{\left(y \right)} \right)} \cos{\left(y \cos{\left(y \right)} \right)} - 2 \left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right)^{3} \cos^{3}{\left(y \cos{\left(y \right)} \right)} - 3 \left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right) \left(y \cos{\left(y \right)} + 2 \sin{\left(y \right)}\right) \sin^{3}{\left(y \cos{\left(y \right)} \right)} + 6 \left(y \sin{\left(y \right)} - \cos{\left(y \right)}\right) \left(y \cos{\left(y \right)} + 2 \sin{\left(y \right)}\right) \sin{\left(y \cos{\left(y \right)} \right)} \cos^{2}{\left(y \cos{\left(y \right)} \right)}\right)$$