Mister Exam

Other calculators


f(x)=x^2(3x+x^3)

Derivative of f(x)=x^2(3x+x^3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2 /       3\
x *\3*x + x /
$$x^{2} \left(x^{3} + 3 x\right)$$
d / 2 /       3\\
--\x *\3*x + x //
dx               
$$\frac{d}{d x} x^{2} \left(x^{3} + 3 x\right)$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. Apply the power rule: goes to

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 2 /       2\       /       3\
x *\3 + 3*x / + 2*x*\3*x + x /
$$x^{2} \cdot \left(3 x^{2} + 3\right) + 2 x \left(x^{3} + 3 x\right)$$
The second derivative [src]
    /        2\
2*x*\9 + 10*x /
$$2 x \left(10 x^{2} + 9\right)$$
The third derivative [src]
  /        2\
6*\3 + 10*x /
$$6 \cdot \left(10 x^{2} + 3\right)$$
The graph
Derivative of f(x)=x^2(3x+x^3)