Mister Exam

Other calculators

Derivative of f(x)=3^x*log3x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x         
3 *log(3*x)
$$3^{x} \log{\left(3 x \right)}$$
3^x*log(3*x)
Detail solution
  1. Apply the product rule:

    ; to find :

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 x                     
3     x                
-- + 3 *log(3)*log(3*x)
x                      
$$3^{x} \log{\left(3 \right)} \log{\left(3 x \right)} + \frac{3^{x}}{x}$$
The second derivative [src]
 x /  1       2               2*log(3)\
3 *|- -- + log (3)*log(3*x) + --------|
   |   2                         x    |
   \  x                               /
$$3^{x} \left(\log{\left(3 \right)}^{2} \log{\left(3 x \right)} + \frac{2 \log{\left(3 \right)}}{x} - \frac{1}{x^{2}}\right)$$
The third derivative [src]
   /                                        2   \
 x |2       3               3*log(3)   3*log (3)|
3 *|-- + log (3)*log(3*x) - -------- + ---------|
   | 3                          2          x    |
   \x                          x                /
$$3^{x} \left(\log{\left(3 \right)}^{3} \log{\left(3 x \right)} + \frac{3 \log{\left(3 \right)}^{2}}{x} - \frac{3 \log{\left(3 \right)}}{x^{2}} + \frac{2}{x^{3}}\right)$$