Detail solution
-
Let .
-
The derivative of sine is cosine:
-
Then, apply the chain rule. Multiply by :
-
Differentiate term by term:
-
Apply the power rule: goes to
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
-
Now simplify:
The answer is:
The first derivative
[src]
/ 2 \
(2 + 2*x)*cos\x + 2*x/
$$\left(2 x + 2\right) \cos{\left(x^{2} + 2 x \right)}$$
The second derivative
[src]
/ 2 \
2*\- 2*(1 + x) *sin(x*(2 + x)) + cos(x*(2 + x))/
$$2 \left(- 2 \left(x + 1\right)^{2} \sin{\left(x \left(x + 2\right) \right)} + \cos{\left(x \left(x + 2\right) \right)}\right)$$
The third derivative
[src]
/ 2 \
-4*(1 + x)*\3*sin(x*(2 + x)) + 2*(1 + x) *cos(x*(2 + x))/
$$- 4 \left(x + 1\right) \left(2 \left(x + 1\right)^{2} \cos{\left(x \left(x + 2\right) \right)} + 3 \sin{\left(x \left(x + 2\right) \right)}\right)$$