Mister Exam

Derivative of f(x)=sin(x²+2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2      \
sin\x  + 2*x/
sin(x2+2x)\sin{\left(x^{2} + 2 x \right)}
sin(x^2 + 2*x)
Detail solution
  1. Let u=x2+2xu = x^{2} + 2 x.

  2. The derivative of sine is cosine:

    ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

  3. Then, apply the chain rule. Multiply by ddx(x2+2x)\frac{d}{d x} \left(x^{2} + 2 x\right):

    1. Differentiate x2+2xx^{2} + 2 x term by term:

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result is: 2x+22 x + 2

    The result of the chain rule is:

    (2x+2)cos(x2+2x)\left(2 x + 2\right) \cos{\left(x^{2} + 2 x \right)}

  4. Now simplify:

    (2x+2)cos(x(x+2))\left(2 x + 2\right) \cos{\left(x \left(x + 2\right) \right)}


The answer is:

(2x+2)cos(x(x+2))\left(2 x + 2\right) \cos{\left(x \left(x + 2\right) \right)}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
             / 2      \
(2 + 2*x)*cos\x  + 2*x/
(2x+2)cos(x2+2x)\left(2 x + 2\right) \cos{\left(x^{2} + 2 x \right)}
The second derivative [src]
  /           2                                \
2*\- 2*(1 + x) *sin(x*(2 + x)) + cos(x*(2 + x))/
2(2(x+1)2sin(x(x+2))+cos(x(x+2)))2 \left(- 2 \left(x + 1\right)^{2} \sin{\left(x \left(x + 2\right) \right)} + \cos{\left(x \left(x + 2\right) \right)}\right)
The third derivative [src]
           /                            2               \
-4*(1 + x)*\3*sin(x*(2 + x)) + 2*(1 + x) *cos(x*(2 + x))/
4(x+1)(2(x+1)2cos(x(x+2))+3sin(x(x+2)))- 4 \left(x + 1\right) \left(2 \left(x + 1\right)^{2} \cos{\left(x \left(x + 2\right) \right)} + 3 \sin{\left(x \left(x + 2\right) \right)}\right)