Mister Exam

Other calculators


f(x)=-3sin(5x-6)+12x²

Derivative of f(x)=-3sin(5x-6)+12x²

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                      2
-3*sin(5*x - 6) + 12*x 
12x23sin(5x6)12 x^{2} - 3 \sin{\left(5 x - 6 \right)}
d /                      2\
--\-3*sin(5*x - 6) + 12*x /
dx                         
ddx(12x23sin(5x6))\frac{d}{d x} \left(12 x^{2} - 3 \sin{\left(5 x - 6 \right)}\right)
Detail solution
  1. Differentiate 12x23sin(5x6)12 x^{2} - 3 \sin{\left(5 x - 6 \right)} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=5x6u = 5 x - 6.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx(5x6)\frac{d}{d x} \left(5 x - 6\right):

        1. Differentiate 5x65 x - 6 term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 55

          2. The derivative of the constant (1)6\left(-1\right) 6 is zero.

          The result is: 55

        The result of the chain rule is:

        5cos(5x6)5 \cos{\left(5 x - 6 \right)}

      So, the result is: 15cos(5x6)- 15 \cos{\left(5 x - 6 \right)}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      So, the result is: 24x24 x

    The result is: 24x15cos(5x6)24 x - 15 \cos{\left(5 x - 6 \right)}

  2. Now simplify:

    24x15cos(5x6)24 x - 15 \cos{\left(5 x - 6 \right)}


The answer is:

24x15cos(5x6)24 x - 15 \cos{\left(5 x - 6 \right)}

The graph
02468-8-6-4-2-1010-20002000
The first derivative [src]
-15*cos(5*x - 6) + 24*x
24x15cos(5x6)24 x - 15 \cos{\left(5 x - 6 \right)}
The second derivative [src]
3*(8 + 25*sin(-6 + 5*x))
3(25sin(5x6)+8)3 \cdot \left(25 \sin{\left(5 x - 6 \right)} + 8\right)
The third derivative [src]
375*cos(-6 + 5*x)
375cos(5x6)375 \cos{\left(5 x - 6 \right)}
The graph
Derivative of f(x)=-3sin(5x-6)+12x²