Mister Exam

Other calculators

Derivative of f(x)=log2(4x-3x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /         2\
log\4*x - 3*x /
---------------
     log(2)    
$$\frac{\log{\left(- 3 x^{2} + 4 x \right)}}{\log{\left(2 \right)}}$$
log(4*x - 3*x^2)/log(2)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      4 - 6*x      
-------------------
/         2\       
\4*x - 3*x /*log(2)
$$\frac{4 - 6 x}{\left(- 3 x^{2} + 4 x\right) \log{\left(2 \right)}}$$
The second derivative [src]
  /                2\
  |    2*(-2 + 3*x) |
2*|3 - -------------|
  \     x*(-4 + 3*x)/
---------------------
 x*(-4 + 3*x)*log(2) 
$$\frac{2 \left(3 - \frac{2 \left(3 x - 2\right)^{2}}{x \left(3 x - 4\right)}\right)}{x \left(3 x - 4\right) \log{\left(2 \right)}}$$
The third derivative [src]
              /                2\
              |    4*(-2 + 3*x) |
-4*(-2 + 3*x)*|9 - -------------|
              \     x*(-4 + 3*x)/
---------------------------------
       2           2             
      x *(-4 + 3*x) *log(2)      
$$- \frac{4 \left(9 - \frac{4 \left(3 x - 2\right)^{2}}{x \left(3 x - 4\right)}\right) \left(3 x - 2\right)}{x^{2} \left(3 x - 4\right)^{2} \log{\left(2 \right)}}$$