Mister Exam

Derivative of f(x)=exp(tan(x)+2x³)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             3
 tan(x) + 2*x 
e             
$$e^{2 x^{3} + \tan{\left(x \right)}}$$
  /             3\
d | tan(x) + 2*x |
--\e             /
dx                
$$\frac{d}{d x} e^{2 x^{3} + \tan{\left(x \right)}}$$
Detail solution
  1. Let .

  2. The derivative of is itself.

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of sine is cosine:

        To find :

        1. The derivative of cosine is negative sine:

        Now plug in to the quotient rule:

      3. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                                  3
/       2         2\  tan(x) + 2*x 
\1 + tan (x) + 6*x /*e             
$$\left(6 x^{2} + \tan^{2}{\left(x \right)} + 1\right) e^{2 x^{3} + \tan{\left(x \right)}}$$
The second derivative [src]
/                    2                                \     3         
|/       2         2\             /       2   \       |  2*x  + tan(x)
\\1 + tan (x) + 6*x /  + 12*x + 2*\1 + tan (x)/*tan(x)/*e             
$$\left(2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \left(6 x^{2} + \tan^{2}{\left(x \right)} + 1\right)^{2} + 12 x\right) e^{2 x^{3} + \tan{\left(x \right)}}$$
The third derivative [src]
/                         3                  2                                                                                \     3         
|     /       2         2\      /       2   \         2    /       2   \     /      /       2   \       \ /       2         2\|  2*x  + tan(x)
\12 + \1 + tan (x) + 6*x /  + 2*\1 + tan (x)/  + 4*tan (x)*\1 + tan (x)/ + 6*\6*x + \1 + tan (x)/*tan(x)/*\1 + tan (x) + 6*x //*e             
$$\left(4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} + \left(6 x^{2} + \tan^{2}{\left(x \right)} + 1\right)^{3} + 6 \cdot \left(\left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 6 x\right) \left(6 x^{2} + \tan^{2}{\left(x \right)} + 1\right) + 2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} + 12\right) e^{2 x^{3} + \tan{\left(x \right)}}$$
The graph
Derivative of f(x)=exp(tan(x)+2x³)