Mister Exam

Derivative of f(x)=5sqrt(x)sqrt(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    ___   ___
5*\/ x *\/ x 
x5x\sqrt{x} 5 \sqrt{x}
(5*sqrt(x))*sqrt(x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=5xf{\left(x \right)} = 5 \sqrt{x}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: x\sqrt{x} goes to 12x\frac{1}{2 \sqrt{x}}

      So, the result is: 52x\frac{5}{2 \sqrt{x}}

    g(x)=xg{\left(x \right)} = \sqrt{x}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Apply the power rule: x\sqrt{x} goes to 12x\frac{1}{2 \sqrt{x}}

    The result is: 55


The answer is:

55

The graph
02468-8-6-4-2-1010-100100
The first derivative [src]
5
55
The second derivative [src]
0
00
The third derivative [src]
0
00