Detail solution
-
Apply the product rule:
; to find :
-
The derivative of is itself.
; to find :
-
Rewrite the function to be differentiated:
-
Apply the quotient rule, which is:
and .
To find :
-
The derivative of sine is cosine:
To find :
-
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
/ 2 \ x x
\1 + tan (x)/*e + e *tan(x)
$$\left(\tan^{2}{\left(x \right)} + 1\right) e^{x} + e^{x} \tan{\left(x \right)}$$
The second derivative
[src]
/ 2 / 2 \ \ x
\2 + 2*tan (x) + 2*\1 + tan (x)/*tan(x) + tan(x)/*e
$$\left(2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 2 \tan^{2}{\left(x \right)} + \tan{\left(x \right)} + 2\right) e^{x}$$
The third derivative
[src]
/ 2 / 2 \ / 2 \ / 2 \ \ x
\3 + 3*tan (x) + 2*\1 + tan (x)/*\1 + 3*tan (x)/ + 6*\1 + tan (x)/*tan(x) + tan(x)/*e
$$\left(2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + 6 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 3 \tan^{2}{\left(x \right)} + \tan{\left(x \right)} + 3\right) e^{x}$$