Mister Exam

Other calculators

Derivative of exp(x)*cos(x/3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x    /x\
e *cos|-|
      \3/
$$e^{x} \cos{\left(\frac{x}{3} \right)}$$
exp(x)*cos(x/3)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of is itself.

    ; to find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
             x    /x\
            e *sin|-|
   /x\  x         \3/
cos|-|*e  - ---------
   \3/          3    
$$- \frac{e^{x} \sin{\left(\frac{x}{3} \right)}}{3} + e^{x} \cos{\left(\frac{x}{3} \right)}$$
The second derivative [src]
/       /x\        /x\\  x
|- 6*sin|-| + 8*cos|-||*e 
\       \3/        \3//   
--------------------------
            9             
$$\frac{\left(- 6 \sin{\left(\frac{x}{3} \right)} + 8 \cos{\left(\frac{x}{3} \right)}\right) e^{x}}{9}$$
The third derivative [src]
/        /x\         /x\\  x
|- 26*sin|-| + 18*cos|-||*e 
\        \3/         \3//   
----------------------------
             27             
$$\frac{\left(- 26 \sin{\left(\frac{x}{3} \right)} + 18 \cos{\left(\frac{x}{3} \right)}\right) e^{x}}{27}$$