Mister Exam

Derivative of exp^sqrtx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ___
 \/ x 
E     
$$e^{\sqrt{x}}$$
E^(sqrt(x))
Detail solution
  1. Let .

  2. The derivative of is itself.

  3. Then, apply the chain rule. Multiply by :

    1. Apply the power rule: goes to

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
    ___
  \/ x 
 e     
-------
    ___
2*\/ x 
$$\frac{e^{\sqrt{x}}}{2 \sqrt{x}}$$
The second derivative [src]
              ___
/1    1  \  \/ x 
|- - ----|*e     
|x    3/2|       
\    x   /       
-----------------
        4        
$$\frac{\left(\frac{1}{x} - \frac{1}{x^{\frac{3}{2}}}\right) e^{\sqrt{x}}}{4}$$
The third derivative [src]
                      ___
/ 1     3     3  \  \/ x 
|---- - -- + ----|*e     
| 3/2    2    5/2|       
\x      x    x   /       
-------------------------
            8            
$$\frac{\left(- \frac{3}{x^{2}} + \frac{1}{x^{\frac{3}{2}}} + \frac{3}{x^{\frac{5}{2}}}\right) e^{\sqrt{x}}}{8}$$