Mister Exam

Other calculators


exp^(sin(4x))*cos(6x)

Derivative of exp^(sin(4x))*cos(6x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sin(4*x)         
e        *cos(6*x)
$$e^{\sin{\left(4 x \right)}} \cos{\left(6 x \right)}$$
d / sin(4*x)         \
--\e        *cos(6*x)/
dx                    
$$\frac{d}{d x} e^{\sin{\left(4 x \right)}} \cos{\left(6 x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     sin(4*x)                                 sin(4*x)
- 6*e        *sin(6*x) + 4*cos(4*x)*cos(6*x)*e        
$$4 e^{\sin{\left(4 x \right)}} \cos{\left(4 x \right)} \cos{\left(6 x \right)} - 6 e^{\sin{\left(4 x \right)}} \sin{\left(6 x \right)}$$
The second derivative [src]
   /               /     2                \                                \  sin(4*x)
-4*\9*cos(6*x) + 4*\- cos (4*x) + sin(4*x)/*cos(6*x) + 12*cos(4*x)*sin(6*x)/*e        
$$- 4 \cdot \left(4 \left(- \cos^{2}{\left(4 x \right)} + \sin{\left(4 x \right)}\right) \cos{\left(6 x \right)} + 12 \sin{\left(6 x \right)} \cos{\left(4 x \right)} + 9 \cos{\left(6 x \right)}\right) e^{\sin{\left(4 x \right)}}$$
The third derivative [src]
  /                                        /     2                \              /       2                  \                  \  sin(4*x)
8*\27*sin(6*x) - 54*cos(4*x)*cos(6*x) + 36*\- cos (4*x) + sin(4*x)/*sin(6*x) - 8*\1 - cos (4*x) + 3*sin(4*x)/*cos(4*x)*cos(6*x)/*e        
$$8 \cdot \left(- 8 \cdot \left(- \cos^{2}{\left(4 x \right)} + 3 \sin{\left(4 x \right)} + 1\right) \cos{\left(4 x \right)} \cos{\left(6 x \right)} + 36 \left(- \cos^{2}{\left(4 x \right)} + \sin{\left(4 x \right)}\right) \sin{\left(6 x \right)} - 54 \cos{\left(4 x \right)} \cos{\left(6 x \right)} + 27 \sin{\left(6 x \right)}\right) e^{\sin{\left(4 x \right)}}$$
The graph
Derivative of exp^(sin(4x))*cos(6x)