Mister Exam

Other calculators

Derivative of exp(sinx)×x^(5)+lg(5x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sin(x)  5               
e      *x  + log(5*x + 1)
$$x^{5} e^{\sin{\left(x \right)}} + \log{\left(5 x + 1 \right)}$$
exp(sin(x))*x^5 + log(5*x + 1)
Detail solution
  1. Differentiate term by term:

    1. Apply the product rule:

      ; to find :

      1. Let .

      2. The derivative of is itself.

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of sine is cosine:

        The result of the chain rule is:

      ; to find :

      1. Apply the power rule: goes to

      The result is:

    2. Let .

    3. The derivative of is .

    4. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   5         4  sin(x)    5         sin(x)
------- + 5*x *e       + x *cos(x)*e      
5*x + 1                                   
$$x^{5} e^{\sin{\left(x \right)}} \cos{\left(x \right)} + 5 x^{4} e^{\sin{\left(x \right)}} + \frac{5}{5 x + 1}$$
The second derivative [src]
      25           3  sin(x)    5    2     sin(x)    5  sin(x)              4         sin(x)
- ---------- + 20*x *e       + x *cos (x)*e       - x *e      *sin(x) + 10*x *cos(x)*e      
           2                                                                                
  (1 + 5*x)                                                                                 
$$- x^{5} e^{\sin{\left(x \right)}} \sin{\left(x \right)} + x^{5} e^{\sin{\left(x \right)}} \cos^{2}{\left(x \right)} + 10 x^{4} e^{\sin{\left(x \right)}} \cos{\left(x \right)} + 20 x^{3} e^{\sin{\left(x \right)}} - \frac{25}{\left(5 x + 1\right)^{2}}$$
The third derivative [src]
   250           2  sin(x)    5    3     sin(x)    5         sin(x)       4  sin(x)              4    2     sin(x)       3         sin(x)      5         sin(x)       
---------- + 60*x *e       + x *cos (x)*e       - x *cos(x)*e       - 15*x *e      *sin(x) + 15*x *cos (x)*e       + 60*x *cos(x)*e       - 3*x *cos(x)*e      *sin(x)
         3                                                                                                                                                            
(1 + 5*x)                                                                                                                                                             
$$- 3 x^{5} e^{\sin{\left(x \right)}} \sin{\left(x \right)} \cos{\left(x \right)} + x^{5} e^{\sin{\left(x \right)}} \cos^{3}{\left(x \right)} - x^{5} e^{\sin{\left(x \right)}} \cos{\left(x \right)} - 15 x^{4} e^{\sin{\left(x \right)}} \sin{\left(x \right)} + 15 x^{4} e^{\sin{\left(x \right)}} \cos^{2}{\left(x \right)} + 60 x^{3} e^{\sin{\left(x \right)}} \cos{\left(x \right)} + 60 x^{2} e^{\sin{\left(x \right)}} + \frac{250}{\left(5 x + 1\right)^{3}}$$