Mister Exam

Derivative of exp(-ax)*sin(bx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -a*x         
e    *sin(b*x)
$$e^{- a x} \sin{\left(b x \right)}$$
exp((-a)*x)*sin(b*x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The first derivative [src]
            -a*x      -a*x         
b*cos(b*x)*e     - a*e    *sin(b*x)
$$- a e^{- a x} \sin{\left(b x \right)} + b e^{- a x} \cos{\left(b x \right)}$$
The second derivative [src]
/ 2             2                          \  -a*x
\a *sin(b*x) - b *sin(b*x) - 2*a*b*cos(b*x)/*e    
$$\left(a^{2} \sin{\left(b x \right)} - 2 a b \cos{\left(b x \right)} - b^{2} \sin{\left(b x \right)}\right) e^{- a x}$$
The third derivative [src]
/   3             3                 2                 2         \  -a*x
\- a *sin(b*x) - b *cos(b*x) + 3*a*b *sin(b*x) + 3*b*a *cos(b*x)/*e    
$$\left(- a^{3} \sin{\left(b x \right)} + 3 a^{2} b \cos{\left(b x \right)} + 3 a b^{2} \sin{\left(b x \right)} - b^{3} \cos{\left(b x \right)}\right) e^{- a x}$$