Mister Exam

Other calculators

Derivative of exp(4*x)/((2*tan(4*x)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    4*x   
   e      
----------
2*tan(4*x)
e4x2tan(4x)\frac{e^{4 x}}{2 \tan{\left(4 x \right)}}
exp(4*x)/((2*tan(4*x)))
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=e4xf{\left(x \right)} = e^{4 x} and g(x)=2tan(4x)g{\left(x \right)} = 2 \tan{\left(4 x \right)}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=4xu = 4 x.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 44

      The result of the chain rule is:

      4e4x4 e^{4 x}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Rewrite the function to be differentiated:

        tan(4x)=sin(4x)cos(4x)\tan{\left(4 x \right)} = \frac{\sin{\left(4 x \right)}}{\cos{\left(4 x \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(4x)f{\left(x \right)} = \sin{\left(4 x \right)} and g(x)=cos(4x)g{\left(x \right)} = \cos{\left(4 x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=4xu = 4 x.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          The result of the chain rule is:

          4cos(4x)4 \cos{\left(4 x \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=4xu = 4 x.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          The result of the chain rule is:

          4sin(4x)- 4 \sin{\left(4 x \right)}

        Now plug in to the quotient rule:

        4sin2(4x)+4cos2(4x)cos2(4x)\frac{4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}}{\cos^{2}{\left(4 x \right)}}

      So, the result is: 2(4sin2(4x)+4cos2(4x))cos2(4x)\frac{2 \left(4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}\right)}{\cos^{2}{\left(4 x \right)}}

    Now plug in to the quotient rule:

    2(4sin2(4x)+4cos2(4x))e4xcos2(4x)+8e4xtan(4x)4tan2(4x)\frac{- \frac{2 \left(4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}\right) e^{4 x}}{\cos^{2}{\left(4 x \right)}} + 8 e^{4 x} \tan{\left(4 x \right)}}{4 \tan^{2}{\left(4 x \right)}}

  2. Now simplify:

    (2tan(4x)2sin2(4x))e4x\left(\frac{2}{\tan{\left(4 x \right)}} - \frac{2}{\sin^{2}{\left(4 x \right)}}\right) e^{4 x}


The answer is:

(2tan(4x)2sin2(4x))e4x\left(\frac{2}{\tan{\left(4 x \right)}} - \frac{2}{\sin^{2}{\left(4 x \right)}}\right) e^{4 x}

The graph
02468-8-6-4-2-1010-50000000000000000005000000000000000000
The first derivative [src]
                    /          2     \  4*x
      1       4*x   \-8 - 8*tan (4*x)/*e   
4*----------*e    + -----------------------
  2*tan(4*x)                   2           
                          4*tan (4*x)      
(8tan2(4x)8)e4x4tan2(4x)+4e4x12tan(4x)\frac{\left(- 8 \tan^{2}{\left(4 x \right)} - 8\right) e^{4 x}}{4 \tan^{2}{\left(4 x \right)}} + 4 e^{4 x} \frac{1}{2 \tan{\left(4 x \right)}}
The second derivative [src]
  /      /       2     \                     /            2     \\     
  |    2*\1 + tan (4*x)/     /       2     \ |     1 + tan (4*x)||  4*x
8*|1 - ----------------- + 2*\1 + tan (4*x)/*|-1 + -------------||*e   
  |         tan(4*x)                         |          2       ||     
  \                                          \       tan (4*x)  //     
-----------------------------------------------------------------------
                                tan(4*x)                               
8(2(tan2(4x)+1tan2(4x)1)(tan2(4x)+1)2(tan2(4x)+1)tan(4x)+1)e4xtan(4x)\frac{8 \left(2 \left(\frac{\tan^{2}{\left(4 x \right)} + 1}{\tan^{2}{\left(4 x \right)}} - 1\right) \left(\tan^{2}{\left(4 x \right)} + 1\right) - \frac{2 \left(\tan^{2}{\left(4 x \right)} + 1\right)}{\tan{\left(4 x \right)}} + 1\right) e^{4 x}}{\tan{\left(4 x \right)}}
The third derivative [src]
   /                                                                                                               /            2     \\     
   |                                                                                               /       2     \ |     1 + tan (4*x)||     
   |                                               3                                         2   6*\1 + tan (4*x)/*|-1 + -------------||     
   |                                /       2     \      /       2     \      /       2     \                      |          2       ||     
   |        1            2        6*\1 + tan (4*x)/    3*\1 + tan (4*x)/   10*\1 + tan (4*x)/                      \       tan (4*x)  /|  4*x
32*|-4 + -------- - 4*tan (4*x) - ------------------ - ----------------- + ------------------- + --------------------------------------|*e   
   |     tan(4*x)                        4                    2                    2                            tan(4*x)               |     
   \                                  tan (4*x)            tan (4*x)            tan (4*x)                                              /     
32(6(tan2(4x)+1tan2(4x)1)(tan2(4x)+1)tan(4x)6(tan2(4x)+1)3tan4(4x)+10(tan2(4x)+1)2tan2(4x)3(tan2(4x)+1)tan2(4x)4tan2(4x)4+1tan(4x))e4x32 \left(\frac{6 \left(\frac{\tan^{2}{\left(4 x \right)} + 1}{\tan^{2}{\left(4 x \right)}} - 1\right) \left(\tan^{2}{\left(4 x \right)} + 1\right)}{\tan{\left(4 x \right)}} - \frac{6 \left(\tan^{2}{\left(4 x \right)} + 1\right)^{3}}{\tan^{4}{\left(4 x \right)}} + \frac{10 \left(\tan^{2}{\left(4 x \right)} + 1\right)^{2}}{\tan^{2}{\left(4 x \right)}} - \frac{3 \left(\tan^{2}{\left(4 x \right)} + 1\right)}{\tan^{2}{\left(4 x \right)}} - 4 \tan^{2}{\left(4 x \right)} - 4 + \frac{1}{\tan{\left(4 x \right)}}\right) e^{4 x}