Detail solution
-
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
The first derivative
[src]
-5*x
/ c1 + c2*x\ / / c1 + c2*x\ c1 + c2*x -c1 - c2*x\
\e / *\- 5*log\e / - 5*c2*x*e *e /
$$\left(- 5 c_{2} x e^{- c_{1} - c_{2} x} e^{c_{1} + c_{2} x} - 5 \log{\left(e^{c_{1} + c_{2} x} \right)}\right) \left(e^{c_{1} + c_{2} x}\right)^{- 5 x}$$
The second derivative
[src]
-5*x / 2\
/ c1 + c2*x\ | / / c1 + c2*x\\ |
5*\e / *\-2*c2 + 5*\c2*x + log\e // /
$$5 \left(- 2 c_{2} + 5 \left(c_{2} x + \log{\left(e^{c_{1} + c_{2} x} \right)}\right)^{2}\right) \left(e^{c_{1} + c_{2} x}\right)^{- 5 x}$$
The third derivative
[src]
-5*x / 2 \
/ c1 + c2*x\ | / / c1 + c2*x\\ | / / c1 + c2*x\\
25*\e / *\- 5*\c2*x + log\e // + 6*c2/*\c2*x + log\e //
$$25 \left(6 c_{2} - 5 \left(c_{2} x + \log{\left(e^{c_{1} + c_{2} x} \right)}\right)^{2}\right) \left(c_{2} x + \log{\left(e^{c_{1} + c_{2} x} \right)}\right) \left(e^{c_{1} + c_{2} x}\right)^{- 5 x}$$