Mister Exam

Other calculators

Derivative of exp(ax)/((p-1)(p-2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       a*x     
      e        
---------------
(p - 1)*(p - 2)
$$\frac{e^{a x}}{\left(p - 2\right) \left(p - 1\right)}$$
exp(a*x)/(((p - 1)*(p - 2)))
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The first derivative [src]
         1         a*x
a*---------------*e   
  (p - 1)*(p - 2)     
$$a \frac{1}{\left(p - 2\right) \left(p - 1\right)} e^{a x}$$
The second derivative [src]
      2  a*x     
     a *e        
-----------------
(-1 + p)*(-2 + p)
$$\frac{a^{2} e^{a x}}{\left(p - 2\right) \left(p - 1\right)}$$
The third derivative [src]
      3  a*x     
     a *e        
-----------------
(-1 + p)*(-2 + p)
$$\frac{a^{3} e^{a x}}{\left(p - 2\right) \left(p - 1\right)}$$